

Datasheet: MCA90SBV570

Description:	MOUSE ANTI HUMAN CD90:StarBright Violet 570		
Specificity:	CD90		
Other names:	THY1		
Format:	StarBright Violet 570		
Product Type:	Monoclonal Antibody		
Clone:	F15-42-1		
Isotype:	lgG1		
Quantity:	100 TESTS/0.5ml		

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Flow Cytometry				Neat

Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.

Target Species	Human			
Species Cross	Reacts with: Cynomo	olgus monkey		
Reactivity	reactivity is derived f	rity and working condition testing within our lesting within our lessions from the originate	aboratories, peer-r	eviewed publications o
Product Form	Purified IgG conjuga	ted to StarBright Violet	570 - liquid	
Max Ex/Em	Fluorophore	Excitation Max (nm)	Emission Max (nr	n)
	StarBright Violet 570	404	571	
Preparation	Purified IgG prepared supernatant	d by affinity chromatog	raphy on Protein A	from tissue culture
Buffer Solution				

Preservative Stabilisers

0.09% Sodium Azide (NaN₃)1% Bovine Serum Albumin

0.1% Pluronic F68 0.1% PEG 3350 0.05% Tween 20

Immunogen

Purified human brain Thy-1.

External Database Links

UniProt:

P04216 Related reagents

Entrez Gene:

7070 THY1 Related reagents

Fusion Partners

Spleen cells from immunized BALB/c mice were fused with cells of the mouse NS-1 myeloma cell line.

Specificity

Mouse anti Human CD90 antibody, clone F15-42-1 recognizes the human CD90 cell surface antigen, a ~25 kDa glycoprotein homologous to rat Thy1. The antigen is expressed by a subset of CD34+ve cells in the bone marrow and by prothymocytes within the thymus. CD90 is also expressed extensively within the brain.

Mouse anti Human CD90 antibody, clone F15-42-1 is routinely tested in flow cytometry on the MOLT4 cell line.

Flow Cytometry

Use 5μ I of the suggested working dilution to label 10^6 cells in 100μ I. Best practices suggest a 5 minutes centrifugation at 6,000g prior to sample application.

References

- 1. Daar, A.S. & Fabre, J.W. (1981) Demonstration with monoclonal antibodies of an unusual mononuclear cell infiltrate and loss of normal epithelial membrane antigens in human breast carcinomas. <u>Lancet. 2 (8244): 434-8.</u>
- 2. Fiegel, H.C. *et al.* (2004) Stem-like cells in human hepatoblastoma. <u>J Histochem</u> Cytochem. 52 (11): 1495-501.
- 3. Hagood, J.S. *et al.* (2005) Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol. 167 (2): 365-79.
- 4. Tome, M. *et al.* (2007) Calponin is expressed by subpopulations of connective tissue cells but not olfactory ensheathing cells in the neonatal olfactory mucosa. <u>BMC Neurosci.</u> 8: 74.
- 5. Diaz-Romero, J. *et al.* (2008) Immunophenotypic changes of human articular chondrocytes during monolayer culture reflect bona fide dedifferentiation rather than amplification of progenitor cells. J Cell Physiol. 214: 75-83.
- 6. Pessina, A. *et al.* (2010) CD45+/CD133+ positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency. <u>Cell Biol Int. 34: 783-90.</u>
- 7. Manochantr, S. *et al.* (2010) Isolation, characterization and neural differentiation potential of amnion derived mesenchymal stem cells. <u>J Med Assoc Thai. 93 Suppl 7:</u> S183-91.
- 8. Karlsen, T.A. et al. (2010) Human primary articular chondrocytes, chondroblasts-like

- cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype. Tissue Eng Part C Methods. 17: 219-27.
- 9. Hauser, P.V. *et al.* (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. <u>Am J Pathol. 177: 2011-21.</u>
- 10. Yin, S. *et al.* (2010) Chondrogenic transdifferentiation of human dermal fibroblasts stimulated with cartilage-derived morphogenetic protein 1. <u>Tissue Eng Part A. 16:</u> 1633-43.
- 11. Gieseke, F. *et al.* (2010) Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. <u>Blood. 116: 3770-9.</u>
- 12. Holzwarth, C. *et al.* (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol. 11:11
- 13. Meng, J. *et al* (2011) Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. <u>PLoS One. 6: e17454.</u>
- 14. Cizeau, J. *et al.* (2011) Fusogenics: a recombinant immunotoxin-based screening platform to select internalizing tumor-specific antibody fragments. <u>J Biomol Screen. 16:</u> 90-100.
- 15. Cox, G. *et al.* (2011) The use of the reamer-irrigator-aspirator to harvest mesenchymal stem cells. <u>J Bone Joint Surg Br. 93: 517-24.</u>
- 16. Shafaei, H. *et al.* (2011) Effects of human placental serum on proliferation and morphology of human adipose tissue-derived stem cells. <u>Bone Marrow Transplant. 46:</u> 1464-71.
- 17. Paul, G. *et al.* (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One. 7: e35577.
- 18. Supokawej, A. *et al.* (2013) Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment. Turk J Haematol. 30 (2): 115-21.
- 19. Escobar, C.H. & Chaparro, O. (2016) Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells. <u>Stem Cells Transl</u> Med. 5 (3): 358-65.
- 20. Shinoda, K. *et al.* (2016) Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. <u>Proc Natl Acad Sci U S A. 113 (20)</u>: E2842-51.
- 21. Kamprom, W. *et al.* (2016) Endothelial Progenitor Cell Migration-Enhancing Factors in the Secretome of Placental-Derived Mesenchymal Stem Cells. <u>Stem Cells Int. 2016:</u> 2514326.
- 22. Vaquero, J. *et al.* (2016) An approach to personalized cell therapy in chronic complete paraplegia: The Puerta de Hierro phase I/II clinical trial. <u>Cytotherapy</u>. 18 (8): 1025-36.
- 23. Zhang, X. *et al.* (2017) Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells. <u>PLoS One. 12 (6):</u> e0180138.
- 24. Garikipati, V. N.S. *et al.* (2018) Isolation and characterization of mesenchymal stem cells from human fetus heart. <u>PLoS One. 13 (2): e0192244.</u>
- 25. Chaturvedi, C.P. *et al.* (2018) Altered Expression of Hematopoiesis Regulatory Molecules in Lipopolysaccharide-Induced Bone Marrow Mesenchymal Stem Cells of Patients with Aplastic Anemia. <u>Stem Cells Int. 2018: 6901761.</u>
- 26. Noda, S. *et al.* (2019) Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. <u>Sci Rep. 9 (1): 5430.</u>
- 27. Song, H. et al. (2019) MIF/CD74 axis participates in inflammatory activation of

Schwann cells following sciatic nerve injury. J Mol Histol. 50 (4): 355-67.

- 28. Paiboon, N. *et al.* (2019) Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells. <u>Stem Cells Int. 2019: 9748795.</u>
- 29. Sanjurjo-Rodriguez, C. *et al.* (2020) Gene Expression Signatures of Synovial Fluid Multipotent Stromal Cells in Advanced Knee Osteoarthritis and Following Knee Joint Distraction. <u>Front Bioeng Biotechnol. 8: 579751.</u>
- 30. Fujii-Tezuka, R. *et al.* (2021) Umbilical artery tissue contains p75 neurotrophin receptor-positive pericyte-like cells that possess neurosphere formation capacity and neurogenic differentiation potential. Regen Ther. 16: 1-11.
- 31. Orikasa, S. *et al.* (2022) Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/ β -catenin transcriptional cofactor BCL9. Sci Rep. 12 (1): 682.
- 32. Sirithammajak, S. *et al.* (2022) Human Mesenchymal Stem Cells Derived from the Placenta and Chorion Suppress the Proliferation while Enhancing the Migration of Human Breast Cancer Cells. Stem Cells Int. 2022: 4020845.
- 33. Arenal, Á. *et al.* (2022) Effects of Cardiac Stem Cell on Postinfarction Arrhythmogenic Substrate. Int J Mol Sci. 23 (24): 16211.
- 34. Kruchen, A. *et al.* (2023) Epigenetic Modification of Mesenchymal Stromal Cells Derived from Bone Marrow and Embryonal Tumors to Facilitate Immunotherapeutic Approaches in Pediatric Malignancies. Curr Issues Mol Biol. 45 (3): 2121-35.
- 35. Payet, M. *et al.* (2023) Inflammatory Mesenchymal Stem Cells Express Abundant Membrane-Bound and Soluble Forms of C-Type Lectin-like CD248. <u>Int J Mol Sci. 24 (11):</u> 9546.
- 36. Tiraihi, T. *et al.* (2023) A Sequential Culturing System for Generating Epithelial-Like Stem Cells from Human Mesenchymal Stem Cells Derived from Adipose Tissue Cell Tissue Biol. 17 (6): 639-52.
- 37. Tripathy, N.K. *et al.* (2018) Cardiomyogenic Heterogeneity of Clonal Subpopulations of Human Bone Marrow Mesenchymal Stem Cells. J Stem Cells Regen Med. 14 (1): 27-33.

Storage	Store at +4°C. DO NOT FREEZE. This product should be stored undiluted.	
Guarantee	12 months from date of despatch	
Acknowledgements	This product is covered by U.S. Patent No. 10,150,841 and related U.S. and fore counterparts	∍ign
Health And Safety Information	Material Safety Datasheet documentation #20471 available at: https://www.bio-rad-antibodies.com/SDS/MCA90SBV570 20471	
Regulatory	For research purposes only	

Related Products

Recommended Useful Reagents

HUMAN SEROBLOCK (BUF070A)

HUMAN SEROBLOCK (BUF070B)

 North & South
 Tel: +1 800 265 7376
 Worldwide
 Tel: +44 (0)1865 852 700
 Europe
 Tel: +49 (0) 89 8090 95 21

 America
 Fax: +1 919 878 3751
 Fax: +44 (0)1865 852 739
 Fax: +49 (0) 89 8090 95 50

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M426150:231121'

Printed on 29 Apr 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint