Datasheet: MCA609SBY665 ## **BATCH NUMBER 100007711** | Description: | RAT ANTI MOUSE CD8 ALPHA: StarBright Yellow 665 | | |---------------|---|--| | Specificity: | CD8 ALPHA | | | Other names: | LY-2 | | | Format: | StarBright Yellow 665 | | | Product Type: | Monoclonal Antibody | | | Clone: | KT15 | | | Isotype: | IgG2a | | | Quantity: | 100 TESTS/0.5ml | | | | | | # **Product Details** ## **Applications** This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. | | Yes | No | Not Determined | Suggested Dilution | |----------------|-----|----|----------------|--------------------| | Flow Cytometry | • | | | Neat | Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. | Target Species | Mouse | | | |----------------|-----------------------------------|-------------------------|----------------------| | Product Form | Purified IgG conjugate | ed to StarBright Yellov | v 665 - liquid | | lax Ex/Em | Fluorophore | Excitation Max (nm) | Emission Max (nm | | | StarBright Yellow 665 | 554 | 670 | | reparation | Purified IgG prepared supernatant | by affinity chromatog | raphy on Protein A t | | fer Solution | Phosphate buffered sa | aline | | | servative | 0.09% Sodium Azide | (NaN ₃) | | | abilisers | 1% Bovine Serum Alb | umin | | | | 0.1% Pluronic F68 | | | | | 0.1% PEG 3350 | | | T cell clone, C6 ## External Database Links ### **UniProt:** P01731 Related reagents #### **Entrez Gene:** 12525 Cd8a Related reagents ## **Synonyms** Lyt2, Lyt-2 #### **Fusion Partners** Spleen cells from immunized SD rats were fused with cells of the NS0 mouse myeloma cell line ### **Specificity** Rat anti Mouse CD8α, clone KT15, recognizes the alpha chain of mouse CD8. CD8 is a heterodimeric protein composed of disulphide-linked CD8α and CD8β chains that is expressed primarily on cytotoxic T-cells. CD8 functions in the interaction with MHC Class I-bearing targets and plays a role in T-cell-mediated killing (Nakauchi, H. et al., 1985). Clone KT15 is reported to block T-cell-mediated cytotoxicity in *in vitro* assays (Zeis, M. et al., 2002). ### Flow Cytometry Use 5μ l of the suggested working dilution to label 10^6 cells in 100μ l. Best practices suggest a 5 minutes centrifugation at 6,000g prior to sample application. ## References - 1. Tomonari, K. & Lovering, E. (1988) T-cell receptor-specific monoclonal antibodies against a V beta 11-positive mouse T-cell clone. lmmunogenetics.28 (6): 445-51. - 2. Whiteland, J.L. *et al.* (1995) Immunohistochemical detection of T-cell subsets and other leukocytes in paraffin-embedded rat and mouse tissues with monoclonal antibodies. <u>J</u> Histochem Cytochem. 43 (3): 313-20. - 3. Lee, Y.L. *et al* (2003) Oral administration of Agaricus blazei (H1 strain) inhibited tumor growth in a sarcoma 180 inoculation model. Exp Anim. 52: 371-5. - 4. Eller, K. *et al.* (2011) IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol. 186: 83-91. - 5. Grimm, M. *et al.* (2010) Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases. BMC Cancer. 10: 82. - 6. Liao, D. *et al.* (2009) Cancer Associated Fibroblasts Promote Tumor Growth and Metastasis by Modulating the Tumor Immune Microenvironment in a 4T1 Murine Breast Cancer Model PLoS One. 4: e7965. - 7. Moos, M.P. *et al.* (2005) The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. <u>Arterioscler Thromb Vasc Biol. 25: 2386-91.</u> - 8. Stevenson, P.G. *et al.* (2002) Uncoupling of virus-induced inflammation and anti-viral immunity in the brain parenchyma. <u>J Gen Virol. 83: 1735-43.</u> - 9. Wang, X. et al. (2011) Quercetin and Bornyl Acetate Regulate T-Lymphocyte Subsets - and INF-γ/IL-4 Ratio In Utero in Pregnant Mice. <u>Evid Based Complement Alternat Med.</u> 2011: 745262. - 10. Zeis, M. *et al.* (2002) Idiotype protein-pulsed dendritic cells produce strong anti-myeloma effects after syngeneic stem cell transplantation in mice. <u>Bone Marrow Transplant</u>. 29: 213-21. - 11. Ideguchi, M. *et al.* (2008) Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. J Neurosci Res. 86: 1936-43. - 12. Wolf, D. *et al.* (2005) CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. <u>J Am Soc Nephrol. 16:</u> 1360-70. - 13. Severinova, J. *et al.* (2005) Co-inoculation of *Borrelia afzelii* with tick salivary gland extract influences distribution of immunocompetent cells in the skin and lymph nodes of mice. Folia Microbiol (Praha). 50: 457-63. - 14. Zaini, J. *et al.* (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest. 117: 3330-8. - 15. Meyer, C. *et al.* (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. <u>Proc Natl</u> Acad Sci U S A. 108: 17111-6. - 16. Zitt, E. *et al.* (2011) The selective mineralocorticoid receptor antagonist eplerenone is protective in mild anti-GBM glomeru-lonephritis. <u>Int J Clin Exp Pathol. 4:606-15.</u> - 17. Singh, V. *et al.* (2011) Co-administration of IL-1+IL-6+TNF-α with Mycobacterium tuberculosis infected macrophages vaccine induces better protective T cell memory than BCG. PLoS One. 6: e16097. - 18. Kalyanasundaram Bhanumathy, K. *et al.* (2015) Potent immunotherapy against well-established thymoma using adoptively transferred transgene IL-6-engineered dendritic cell-stimulated CD8(+) T-cells with prolonged survival and enhanced cytotoxicity. J Gene Med. 17 (8-9): 153-60. - 19. Abiko K *et al.* (2015) IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. <u>Br J Cancer.</u> 112 (9): 1501-9. - 20. Phan-Lai, V. *et al.* (2016) The Antitumor Efficacy of IL2/IL21-Cultured Polyfunctional Neu-Specific T Cells Is TNFα/IL17 Dependent. Clin Cancer Res. 22 (9): 2207-16. - 21. Kajiwara, T. *et al.* (2016) Hypoxia augments MHC class I antigen presentation via facilitation of ERO1-α-mediated oxidative folding in murine tumor cells. <u>Eur J Immunol. 46</u> (12): 2842-51. - 22. Srivastava, A.K. *et al.* (2016) Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. <u>Exp Neurol. 275 Pt 1: 154-61.</u> - 23. Meier, R.P. *et al.* (2014) Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow. PLoS One. 9 (3): e91268. - 24. Groh, J. *et al.* (2021) Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset <u>Brain Communications</u>. 3(2): fcab047. - 25. Cecil, D.L. *et al.* (2022) COX-2 inhibitors decrease expression of PD-L1 in colon tumors and increase the influx of Type I tumor infiltrating lymphocytes. <u>Cancer Prev Res (Phila)</u>. <u>canprevres.0227.2021</u>. - 26. Karikari, A.A. et al. (2022) Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice. Brain Behav Immun. 101: 194-210. 27. Badr, M. *et al.* (2022) Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson's disease mice. J Neuroinflammation. 19 (1): 319. 28. McFleder, R.L. *et al.* (2023) Brain-to-gut trafficking of alpha-synuclein by CD11c(+) cells in a mouse model of Parkinson's disease. Nat Commun. 14 (1): 7529. 29. Aloui, A. *et al.* (2023) AFM₁ Exposure in Male Balb/c Mice and Intervention Strategies Against Its Immuno-physiological toxicity using Clay Mineral and Lactic Acid Bacteria Alone or in Combination. <u>Immunopharmacol Immunotoxicol.</u>: 1-32. 30. Aringer, I. *et al.* (2021) Agonism of Prostaglandin E2 Receptor 4 Ameliorates Tubulointerstitial Injury in Nephrotoxic Serum Nephritis in Mice. J Clin Med. 10 (4):832. | Storage | Store at +4°C. DO NOT FREEZE. This product should be stored undiluted. | |----------------------------------|--| | Guarantee | 12 months from date of despatch | | Acknowledgements | This product is covered by U.S. Patent No. 10,150,841 and related U.S. and foreign counterparts | | Health And Safety
Information | Material Safety Datasheet documentation #20471 available at: https://www.bio-rad-antibodies.com/SDS/MCA609SBY665 20471 | | Regulatory | For research purposes only | | | | # Related Products ## **Recommended Useful Reagents** MOUSE SEROBLOCK FcR (BUF041A) MOUSE SEROBLOCK FcR (BUF041B) North & South Tel: +1 800 265 7376 America Fax: +1 919 878 3751 Worldwide Tel: +44 (0)1865 852 700 Fax: +44 (0)1865 852 739 Europe Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50 Email: antibody_sales_us@bio-rad.com Email: antibody_sales_uk@bio-rad.com Email: antibody_sales_de@bio-rad.com To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M419127:230522' ### Printed on 08 Mar 2024 © 2024 Bio-Rad Laboratories Inc | Legal | Imprint