

Datasheet: MCA477SBV515 BATCH NUMBER 100004677

Description:MOUSE ANTI HUMAN HLA DP DQ DR:StarBright Violet 515Specificity:HLA DP DQ DRFormat:StarBright Violet 515Product Type:Monoclonal AntibodyClone:WR18Isotype:IgG2aQuantity:100 TESTS/0.5ml		
Format:StarBright Violet 515Product Type:Monoclonal AntibodyClone:WR18Isotype:IgG2a	Description:	MOUSE ANTI HUMAN HLA DP DQ DR:StarBright Violet 515
Product Type:Monoclonal AntibodyClone:WR18Isotype:IgG2a	Specificity:	HLA DP DQ DR
Clone: WR18 Isotype: IgG2a	Format:	StarBright Violet 515
Isotype: IgG2a	Product Type:	Monoclonal Antibody
	Clone:	WR18
Quantity: 100 TESTS/0.5ml	Isotype:	lgG2a
	Quantity:	100 TESTS/0.5ml

Product Details

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit <u>www.bio-rad-antibodies.com/protocols</u> .					
	Yes	No	Not Determined	Suggested Dilution	
	•			Neat	
•			•	•	
necessarily exclude its	s use in such p	rocedur	es. Suggested wor	rking dilutions are given as	
•			•	ict for use in their own	
Human					
Purified IgG conjugate	ed to StarBright	Violet 5	515 - liquid		
Fluorophore	Excitation Max	x (nm)	Emission Max (nm)	
StarBright Violet 515	401		516		
Purified IgG prepared supernatant	by affinity chro	matogra	aphy on Protein G	from tissue culture	
Phosphate buffered sa	aline				
0.09% Sodium Azide	(NaN ₃)				
	,				
0.1% Pluronic F68					
0.1% PEG 3350					
	derived from testing w communications from information. For gener rad-antibodies.com/pr Flow Cytometry Where this product ha necessarily exclude it a guide only. It is reco system using appropr Human Purified IgG conjugate Fluorophore StarBright Violet 515 Purified IgG prepared supernatant Phosphate buffered sa 0.09% Sodium Azide 1% Bovine Serum Alb 0.1% Pluronic F68	derived from testing within our laboral communications from the originators. information. For general protocol recorrad-antibodies.com/protocols.YesFlow CytometryWhere this product has not been test necessarily exclude its use in such pr a guide only. It is recommended that system using appropriate negative/poHumanExcitation Max 401Purified IgG conjugated to StarBrightFluorophoreExcitation Max 401StarBright Violet 515401Purified IgG prepared by affinity chro supernatantPhosphate buffered saline0.09% Sodium Azide (NaN3) 1% Bovine Serum Albumin 0.1% Pluronic F68	derived from testing within our laboratories, procommunications from the originators. Please information. For general protocol recommenderad-antibodies.com/protocols.rad-antibodies.com/protocols.YesNoFlow Cytometry•Where this product has not been tested for unecessarily exclude its use in such procedur a guide only. It is recommended that the use system using appropriate negative/positive ofHumanExcitation Max (nm)StarBright Violet 515401Purified IgG prepared by affinity chromatograsupernatantPhosphate buffered saline0.09% Sodium Azide (NaN3)1% Bovine Serum Albumin0.1% Pluronic F68	derived from testing within our laboratories, peer-reviewed pub communications from the originators. Please refer to reference information. For general protocol recommendations, please vis rad-antibodies.com/protocols. Yes No Not Determined Flow Cytometry • Where this product has not been tested for use in a particular to necessarily exclude its use in such procedures. Suggested word a guide only. It is recommended that the user titrates the product system using appropriate negative/positive controls. Human Purified IgG conjugated to StarBright Violet 515 - liquid Fluorophore Excitation Max (nm) StarBright Violet 515 401 516 Purified IgG prepared by affinity chromatography on Protein G supernatant 516 Phosphate buffered saline 0.09% Sodium Azide (NaN ₃) 1% Bovine Serum Albumin 0.1% Pluronic F68 1% 1% 1%	

Immunogen	Human HLA Class II (DP, DQ, DR).
Fusion Partners	Spleen cells from immunised BALB/c mice were fused with cells from NS0 mouse myeloma cell line.
Specificity	Mouse anti Human HLA DP DQ DR antibody, clone WR18 reacts with a monomorphic determinant common to DP, DQ and DR beta chains, which are expressed by antigen presenting cells, B cells, monocytes and activated T lymphocytes.
	The major histocompatibility complex (MHC) is a cluster of genes that are important in the immune response to infections. In humans, this complex is referred to as the human leukocyte antigen (HLA) region. There are 3 major MHC class II proteins encoded by the HLA which are HLA DP, HLA DQ and HLA DR.
Flow Cytometry	Use 5ul of the suggested working dilution to label 10 ⁶ cells in 100ul. Best practices suggest a 5 minutes centrifugation at 6,000g prior to sample application.
References	 Moore, K. <i>et al.</i> (1987) Use of the monoclonal antibody WR17, identifying the CD37 gp40-45 Kd antigen complex, in the diagnosis of B-lymphoid malignancy. <u>J Pathol</u> 152:13-21. Kissner, T.L. <i>et al.</i> (2011) Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules. <u>PLoS One. 6: e15985.</u> Chia, J.S. <i>et al.</i> (2001) Human T-cell responses to the glucosyltransferases of <i>Streptococcus mutans</i>. <u>Clin Diagn Lab Immunol. 8: 441-5.</u> Chang, Y.C. <i>et al.</i> (2008) Epigenetic control of MHC class II expression in tumorassociated macrophages by decoy receptor 3. <u>Blood.</u> 111: 5054-63. Litzinger, M.T. <i>et al.</i> (2009) Chronic lymphocytic leukemia (CLL) cells genetically modified to express B7-1, ICAM-1, and LFA-3 confer APC capacity to T cells from CLL patients. <u>Cancer Immunol Immunother.</u> 58: 955-65. Sadallah, S. <i>et al.</i> (2011) Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. <u>J Immunol.</u> 186: 6543-52. Sabbah, S. <i>et al.</i> (2012) T-cell immunity to Kaposi sarcoma-associated herpesvirus: recognition of primary effusion lymphoma by LANA-specific CD4+ T cells. <u>Blood.</u> 119 (9): 2083-92. John, J. <i>et al.</i> (2010) Differential effects of Paclitaxel on dendritic cell function. <u>BMC Immunol.</u> 111:4. Palmer, K.J. <i>et al.</i> (2000) Interferon-alpha (IFN-alpha) stimulates anti-melanoma cytotoxic T lymphocyte (CTL) generation in mixed lymphocyte tumour cultures (MLTC). <u>Clin Exp Immunol.</u> 119: 412-8. Silk, K.M. <i>et al.</i> (2012) Rapamycin conditioning of dendritic cells differentiated from human ES cells promotes a tolerogenic phenotype. J Biomed Biotechnol. 2012: 172420. Elias, F. <i>et al.</i> (2012) Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141(+)XCR1+ dendritic cells. <u>Gene Ther.</u> 19 (10); 1035-40.

	13. Adamski, J. (2004) 17{beta}-Estradiol Inhibits Class II MHC Expression: Influence on Histone Modifications and CBP Recruitment to the Class II MHC Promoter <u>Molecular</u> Endocrinology 18:1963
	14. Keating, S. <i>et al.</i> (2002) The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol. 76: 8179-88.
	15. Trefzer, U. <i>et al.</i> (2000) Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma. Int J Cancer. 85 (5): 618-26.
	16. Hayman, M.W. <i>et al.</i> (2006) Soluble human leukocyte antigen: a diagnostic indicator of rheumatoid arthritis? <u>J Immunol Methods. 315 (1-2): 19-26.</u>
	17. Manna, D. <i>et al.</i> (2012) WR18 MONOCLONAL ANTIBODY: A SINGLE ANTIBODY TO DETECT HLA DR, DP AND DQ ANTIGENS. <u>Abstracts/Human immunology 73:49-167</u> <u>abstract 36P</u>
	18. Neumann, F. <i>et al.</i> (2004) Identification of an antigenic peptide derived from the cancer-testis antigen NY-ESO-1 binding to a broad range of HLA-DR subtypes. <u>Cancer</u>
	Immunol Immunother. 53 (7): 589-99. 19. Neumann F <i>et al.</i> (2004) Identification of an HLA-DR-restricted peptide epitope with a
	promiscuous binding pattern derived from the cancer testis antigen HOM-MEL-40/SSX2. Int J Cancer. 112 (4): 661-8.
	20. Iking-Konert C et al. (2005) Transdifferentiation of polymorphonuclear neutrophils to
	dendritic-like cells at the site of inflammation in rheumatoid arthritis: evidence for activation
	by T cells. <u>Ann Rheum Dis. 64 (10): 1436-42.</u>
	21. Hönger, G. et al. (2015) Inter-individual differences in HLA expression can impact the
	CDC crossmatch. <u>Tissue Antigens. 85 (4): 260-6.</u>
	22. del Pilar Martin, M. <i>et al.</i> (2008) Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. <u>Arch Neurol. 65 (12):</u>
	<u>1596-603.</u> 23. Noble, P. <i>et al.</i> (2013) High levels of cleaved caspase-3 in colorectal tumour stroma
	predict good survival. <u>Br J Cancer. 108 (10): 2097-105.</u>
	24. Llewelyn, M. <i>et al.</i> (2004) HLA class II polymorphisms determine responses to
	bacterial superantigens. <u>J Immunol. 172 (3): 1719-26.</u> 25. Koschwanez, H. <i>et al.</i> (2015) Stress-related changes to immune cells in the skin prior
	to wounding may impair subsequent healing. Brain Behav Immun. 50: 47-51.
	26. Ziegler, C.G.K. et al. (2019) Constitutive Activation of the B Cell Receptor Underlies
	Dysfunctional Signaling in Chronic Lymphocytic Leukemia. <u>Cell Rep. 28 (4): 923-937.e3.</u>
Storage	Store at +4°C. DO NOT FREEZE. This product should be stored undiluted.
Guarantee	12 months from date of despatch
Acknowledgements	This product is covered by U.S. Patent No. 10,150,841 and related U.S. and foreign counterparts
Health And Safety Information	Material Safety Datasheet documentation #20438 available at: https://www.bio-rad-antibodies.com/SDS/MCA477SBV515 20438

Related Products

Recommended Useful Reagents

HUMAN SEROBLOCK (BUF070A) HUMAN SEROBLOCK (BUF070B)

North & South	Tel: +1 800 265 7376	Worldwide	Tel: +44 (0)1865 852 700	Europe	Tel: +49 (0) 89 8090 95 21
America	Fax: +1 919 878 3751		Fax: +44 (0)1865 852 739		Fax: +49 (0) 89 8090 95 50
	Email: antibody_sales_us@bio-rad.com		Email: antibody_sales_uk@bio-rad.com		Email: antibody_sales_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M373263:200901'

Printed on 08 Mar 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint