

Datasheet: MCA4754A647

Description:	MOUSE ANTI RAT CD63:Alexa Fluor®647
Specificity:	CD63
Format:	ALEXA FLUOR® 647
Product Type:	Monoclonal Antibody
Clone:	AD1
lsotype:	lgG1
Quantity:	100 TESTS/1ml

Product Details

Applications	This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit <u>www.bio-rad-antibodies.com/protocols</u> .						
	Yes No Not Determined Suggested Diluti						
	Flow Cytometry	-			Neat - 1/10		
	Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.						
Target Species	Rat						
Product Form	Purified IgG conjugated to Alexa Fluor® 647 - liquid						
Max Ex/Em	Fluorophore	Excitation Ma	ax (nm)	Emission Max (nm)			
	Alexa Fluor®647	650		665			
Preparation	Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant						
Buffer Solution	Phosphate buffered saline						
Preservative Stabilisers	0.09% Sodium Azide (NaN ₃) 1% Bovine Serum Albumin						
Approx. Protein Concentrations	IgG concentration 0.0						
Immunogen	RBL-2H3 rat basophilic leukaemia cell line.						

External Database							
Links	UniProt:						
	P28648 Related reagents						
	Entrez Gene:						
	29186 Cd63 Related reagents						
	29100 Cd03 Itelated reagents						
RRID	AB_10613490						
Fusion Partners	Spleen cells from immunized BALB/c mice were fused with cells of the X63-Ag8-653						
	myeloma cell line.						
Specificity	Mouse anti Rat CD63 antibody, clone AD1 recognizes rat CD63, an intracellular type-III						
	lysosomal glycoprotein and member of the tetraspanin (TM4SF) family, found on activated platelets and resident macrophages. Rat CD63 is expressed on mast cells in tissues and						
	can be induced on other cell types <i>in vitro</i> (<u>Nishikata <i>et al.</i> 1992</u>).						
	Mouse anti Rat CD63 antibody, clone AD1 partially inhibits IgE-mediated histamine						
	release and binding competition assays indicate that it is sterically situated close to the						
	high-affinity IgE receptor on rat basophilic leukemia (RBL-2H3) cells (<u>Kitani <i>et al.</i> 1991</u>).						
Flow Cytometry	Use 10ul of the suggested working dilution to label 10 ⁶ cells in 100ul.						
References	1. Boros, M. et al. (1995) Response of mucosal mast cells to intestinal ischemia-						
	reperfusion injury in the rat. <u>Shock. 3 (2): 125-31.</u> 2. Vincent-Schneider, H. <i>et al.</i> (2001) Secretory granules of mast cells accumulate mature						
	and immature MHC class II molecules <u>J Cell Sci. 114(Pt 2): 323-34.</u>						
	3. Kraft, S. et al. (2005) Anti-CD63 antibodies suppress IgE-dependent allergic reactions						
	<i>in vitro</i> and <i>in vivo</i> . <u>J Exp Med. 201: 385-96.</u>						
	<i>In the and in the</i> . <u>BERP Ned. 201. 566-56.</u>						
	4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell						
	4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. <u>J Biol</u>						
	4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. <u>J Biol</u> <u>Chem. 290(9): 5533-42.</u>						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. <u>J Biol</u> <u>Chem. 290(9): 5533-42.</u> 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing 						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. <u>Sci Rep. 6: 31172.</u> 						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. <u>Sci Rep. 6: 31172.</u> 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules 						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. <u>Sci Rep. 6: 31172.</u> 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules 						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 						
	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol <u>Chem. 290(9): 5533-42.</u> 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. <u>Sci Rep. 6: 31172.</u> 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. <u>Nat Commun. 10 (1): 3312.</u> 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol <u>Chem. 290(9): 5533-42.</u> 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. <u>Sci Rep. 6: 31172.</u> 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. <u>Nat Commun. 10 (1): 3312.</u> 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol <u>Chem. 290(9): 5533-42.</u> 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. <u>Sci Rep. 6: 31172.</u> 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. <u>Nat Commun. 10 (1): 3312.</u> 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. <u>Front Neurosci. 13: 942.</u> 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C. 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C. Avoid repeated freezing and thawing as this may denature the antibody. Storage in 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C. Avoid repeated freezing and thawing as this may denature the antibody. Storage in frost-free freezers is not recommended. This product is photosensitive and should be 						
Storage	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C. Avoid repeated freezing and thawing as this may denature the antibody. Storage in 						
Storage Guarantee	 4. Ramezani-Moghadam, M. <i>et al.</i> (2015) Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. J Biol Chem. 290(9): 5533-42. 5. Yoshimura, A. <i>et al.</i> (2016) Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep. 6: 31172. 6. Pasquier, A. <i>et al.</i> (2019) Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun. 10 (1): 3312. 7. Pusic, K.M. <i>et al.</i> (2019) IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci. 13: 942. This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C. Avoid repeated freezing and thawing as this may denature the antibody. Storage in frost-free freezers is not recommended. This product is photosensitive and should be 						

Acknowledgements	This product is provided under an intellectual property licence from Life Technologies Corporation. The transfer of this product is contingent on the buyer using the purchase product solely in research, excluding contract research or any fee for service research, and the buyer must not sell or otherwise transfer this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; (c) manufacturing or quality assurance or quality control, or (d) resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad CA 92008 USA or outlicensing@thermofisher.com
Health And Safety Information	Material Safety Datasheet documentation #10041 available at: https://www.bio-rad-antibodies.com/SDS/MCA4754A647 10041
Regulatory	For research purposes only

Related Products

Recommended Negative Controls

MOUSE IgG1 NEGATIVE CONTROL:Alexa Fluor® 647 (MCA1209A647)

North & South	Tel: +1 800 265 7376	Worldwide	Tel: +44 (0)1865 852 700	Europe	Tel: +49 (0) 89 8090 95 21
America	Fax: +1 919 878 3751		Fax: +44 (0)1865 852 739		Fax: +49 (0) 89 8090 95 50
	Email: antibody_sales_us@bio-ra	ad.com	Email: antibody_sales_uk@bio-ra	ad.com	Email: antibody_sales_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M385514:210513'

Printed on 26 Jun 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint