

Datasheet: MCA43PE BATCH NUMBER 0314

Description:	MOUSE ANTI RAT CD45:RPE		
Specificity:	CD45		
Other names:	LCA		
Format:	RPE		
Product Type:	Monoclonal Antibody		
Clone:	OX-1		
lsotype:	lgG1		
Quantity:	100 TESTS		

Product Details

Applications	This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit <u>www.bio-rad-antibodies.com/protocols</u> .					
		Yes No	Not Determined	Suggested Dilution		
	Flow Cytometry	•		Neat		
	Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.					
Target Species	Rat					
Product Form	Purified IgG conjugated to R. Phycoerythrin (RPE) - Iyophilized					
Reconstitution	Reconstitute with 1 ml distilled water					
Max Ex/Em	Fluorophore	Excitation Max (nm)	Emission Max (nm)			
	RPE 488nm laser	496	578			
Buffer Solution	Phosphate buffered saline					
Preservative Stabilisers	0.09% Sodium Azide1% Bovine Serum Albumin5% Sucrose					
Immunogen	Rat thymocyte membra	ane glycoproteins.				

External Database			
External Database Links	UniProt:		
Links	P04157 Related reagents		
	Fature Ocares		
	Entrez Gene:		
	24699 Ptprc Related reagents		
RRID	AB_321412		
Fusion Partners	Spleen cells from immunised BALB/c mice were fused with cells of the NS1 mouse myeloma cell line.		
Specificity	Mouse anti Rat CD45 antibody, clone OX-1 recognizes CD45, also known as the leucocyte common antigen (LCA). The leucocyte common antigen consists of a family of heavily glycosylated membrane glycoproteins of molecular weight 180 – 240kDa. Antibodies recognising a common epitope on all of these isoforms are termed CD45, whilst those recognising only individual isoforms are termed CD45RA, CD45RO etc. OX-1 reacts with all forms of CD45 expressed by all haematopoietic cells, except erythrocytes.		
	CD45 isoforms play complex roles in T-cell and B-cell antigen receptor signal transduction.		
	This product is routinely tested in flow cytometry on rat splenocytes		
Flow Cytometry	Use 10ul of the suggested working dilution to label 10 ⁶ cells in 100ul.		
Flow Cytometry References	Use 10ul of the suggested working dilution to label 10 ⁶ cells in 100ul. 1. Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u>		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. <u>Int Immunol. 12 (2): 169-76.</u> Standring, R. <i>et al.</i> (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. <u>Eur J Immunol. 8 (12): 832-9.</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. <u>Int Immunol. 12 (2): 169-76.</u> Standring, R. <i>et al.</i> (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. <u>Eur J Immunol. 8 (12): 832-9.</u> Giezeman-Smits, K.M. <i>et al.</i> (1999) The regulatory role of CD45 on rat NK cells in 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. <u>Int Immunol. 12 (2): 169-76.</u> Standring, R. <i>et al.</i> (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. <u>Eur J Immunol. 8 (12): 832-9.</u> Giezeman-Smits, K.M. <i>et al.</i> (1999) The regulatory role of CD45 on rat NK cells in target cell lysis. <u>J Immunol. 163 (1): 71-6.</u> 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. <u>Int Immunol. 12 (2): 169-76.</u> Standring, R. <i>et al.</i> (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. <u>Eur J Immunol. 8 (12): 832-9.</u> Giezeman-Smits, K.M. <i>et al.</i> (1999) The regulatory role of CD45 on rat NK cells in target cell lysis. <u>J Immunol. 163 (1): 71-6.</u> Zilka, N. <i>et al.</i> (2009) Human misfolded truncated tau protein promotes activation of 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin</u> <u>Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. <u>Int Immunol. 12 (2): 169-76.</u> Standring, R. <i>et al.</i> (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. <u>Eur J Immunol. 8 (12): 832-9.</u> Giezeman-Smits, K.M. <i>et al.</i> (1999) The regulatory role of CD45 on rat NK cells in target cell lysis. <u>J Immunol. 163 (1): 71-6.</u> Zilka, N. <i>et al.</i> (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J 		
	 Sunderland, C.A. <i>et al.</i> (1979) Purification with monoclonal antibody of a predominant leukocyte-common antigen and glycoprotein from rat thymocytes. <u>Eur J Immunol. 9 (2):</u> <u>155-9.</u> Woollett, G.R. <i>et al.</i> (1985) Molecular and antigenic heterogeneity of the rat leukocyte- common antigen from thymocytes and T and B lymphocytes. <u>Eur J Immunol. 15 (2):</u> <u>168-73.</u> Martín, A. <i>et al.</i> (1995) Passive dual immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta maximally ameliorates acute aminonucleoside nephrosis. <u>Clin Exp Immunol. 99 (2): 283-8.</u> Sato, K. <i>et al.</i> (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. <u>J Immunol. 166 (6): 4185-94.</u> Murakami, K. <i>et al.</i> (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. <u>Int Immunol. 12 (2): 169-76.</u> Standring, R. <i>et al.</i> (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. <u>Eur J Immunol. 8 (12): 832-9.</u> Giezeman-Smits, K.M. <i>et al.</i> (1999) The regulatory role of CD45 on rat NK cells in target cell lysis. <u>J Immunol. 163 (1): 71-6.</u> Zilka, N. <i>et al.</i> (2009) Human misfolded truncated tau protein promotes activation of 		

DOCA-salt hypertensive rats. FASEB J. 25 (3): 968-78.

10. Ermert, L. *et al.* (2001) Comparison of different detection methods in quantitative microdensitometry. <u>Am J Pathol. 158: 407-17.</u>

11. Jeong, H.K. *et al* (2010) Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury. <u>PLoS One. 5: e13756.</u>

12. Leonardo, C.C. *et al.* (2009) Inhibition of gelatinase activity reduces neural injury in an ex vivo model of hypoxia-ischemia. <u>Neuroscience. 160: 755-66.</u>

13. Markusic, D.M. *et al.* (2010) Separating lentiviral vector injection and induction of gene expression in time, does not prevent an immune response to rtTA in rats. <u>PLoS One. 5: e9974.</u>

14. Vaschetto, R. *et al.* (2010) Renal hypoperfusion and impaired endothelium-dependent vasodilation in an animal model of VILI: the role of the peroxynitrite-PARP pathway <u>Crit</u> <u>Care. 14: R45.</u>

15. Ladhoff, J. *et al.* (2010) Immune privilege of endothelial cells differentiated from endothelial progenitor cells. <u>Cardiovasc Res. 88: 121-9.</u>

16. Yao, Y. *et al.* (2016) Alendronate Attenuates Spinal Microglial Activation and Neuropathic Pain. J Pain. 17 (8): 889-903.

17. Wang, C. *et al.* (2015) Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD. <u>Int Braz J Urol. 41 (4): 764-72.</u>
18. Tanner, D.C. *et al.* (2015) cFLIP is critical for oligodendrocyte protection from inflammation. Cell Death Differ. 22 (9): 1489-501.

19. Runesson, E. *et al.* (2015) Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. <u>BMC Musculoskelet Disord. 16: 212.</u>

20. Hellenbrand, D.J. *et al.* (2019) Sustained interleukin-10 delivery reduces inflammation and improves motor function after spinal cord injury. <u>J Neuroinflammation</u>. <u>16 (1): 93.</u>
21. Pilipović, I. *et al.* (2019) Propranolol diminished severity of rat EAE by enhancing immunoregulatory/protective properties of spinal cord microglia. <u>Neurobiol Dis. Nov 2</u> [Epub ahead of print].

22. Collins, J.J.P. *et al.* (2018) Impaired Angiogenic Supportive Capacity and Altered Gene Expression Profile of Resident CD146⁺ Mesenchymal Stromal Cells Isolated from Hyperoxia-Injured Neonatal Rat Lungs. <u>Stem Cells Dev. 27 (16): 1109-24.</u>

23. Porwal, K. *et al.* (2019) Increased bone marrow-specific adipogenesis by clofazimine causes impaired fracture healing, osteopenia and osteonecrosis without extra-skeletal effects in rats. <u>Toxicol Sci. kfz172</u>.

24. Dabrowska, S. *et al.* (2021) Neuroinflammation evoked by brain injury in a rat model of lacunar infarct. <u>Exp Neurol. 336: 113531.</u>

25. Elabi, O.F. *et al.* (2021) L-dopa-Dependent Effects of GLP-1R Agonists on the Survival of Dopaminergic Cells Transplanted into a Rat Model of Parkinson Disease. <u>Int J Mol Sci.</u> 22(22):12346.

26. Hou, Y. *et al.* (2021) Pseudoginsenoside-F11 promotes functional recovery after transient cerebral ischemia by regulating the microglia/macrophage polarization in rats. Int Immunopharmacol. 99: 107896.

27. Eweida, A. *et al.* (2022) Systemically injected bone marrow mononuclear cells specifically home to axially vascularized tissue engineering constructs. <u>PLoS One. 17 (8):</u> e0272697.

Storage	Prior to reconstitution store at +4°C. Following reconstitution store at +4°C.		
	DO NOT FREEZE.		
	This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.		
Guarantee	12 months from date of despatch		
Health And Safety Information	Material Safety Datasheet documentation #20487 available at: https://www.bio-rad-antibodies.com/SDS/MCA43PE 20487		
Regulatory	For research purposes only		

Related Products

Recommended Negative Controls

MOUSE IgG1 NEGATIVE CONTROL:RPE (MCA1209PE)

North & South	Tel: +1 800 265 7376 Worldwide	Tel: +44 (0)1865 852 700	Europe	Tel: +49 (0) 89 8090 95 21
America	Fax: +1 919 878 3751	Fax: +44 (0)1865 852 739		Fax: +49 (0) 89 8090 95 50
	Email: antibody_sales_us@bio-rad.com	Email: antibody_sales_uk@bio-rad	l.com	Email: antibody_sales_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M375543:210104'

Printed on 05 Feb 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint