

Datasheet: MCA400

Description:	MOUSE ANTI INFLUENZA A NUCLEOPROTEIN
Specificity:	INFLUENZA A NUCLEOPROTEIN
Format:	Purified
Product Type:	Monoclonal Antibody
Clone:	AA5H
Isotype:	lgG2a
Quantity:	1 mg

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Flow Cytometry				
Immunohistology - Frozen				
Immunohistology - Paraffin	•			
ELISA				
Immunoprecipitation				
Western Blotting	•			
Immunofluorescence	•			

Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.

Target Species	Viral	
Product Form	Purified IgG - liquid	
Preparation	Purified IgG prepared by affinity chromatography on Protein A supernatant.	from tissue culture
Buffer Solution	Phosphate buffered saline	
Preservative Stabilisers	<0.1% Sodium Azide (NaN ₃)	
Approx. Protein Concentrations	lgG concentration 1.0 mg/ml	

Immunogen	Influenza A / Puerto Rico / 8 / 34 (H1N1) and A/Bangkok / 1 / 79 (H3N2) viruses.
RRID	AB_2151884
Fusion Partners	Spleen cells from BALB/c mice were fused with cells of the P3 Ag8.653 mouse myeloma cell line.
Specificity	Mouse anti Influenza A Nucleoprotein antibody, clone AA5H recognizes an epitope within Influenza virus A nucleoprotein. Mouse anti Influenza A Nucleoprotein antibody, clone AA5H can be used in influenza A IFA typing in conjunction with MCA401 (clone GA2B).

References

- 1. Herold, S. *et al.* (2006) Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: impact of chemokines and adhesion molecules. <u>J Immunol.</u> 177 (3): 1817-24.
- 2. Thompson, C.I. *et al.* (2006) Infection of human airway epithelium by human and avian strains of influenza a virus. <u>J Virol. 80: 8060-8.</u>
- 3. Ehrhardt, C. *et al.* (2007) Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. <u>J Virol. 81: 3058-67.</u>
- 4. Ehrhardt, C. *et al.* (2007) Activation of phosphatidylinositol 3-kinase signaling by the nonstructural NS1 protein is not conserved among type A and B influenza viruses. <u>J Virol.</u> 81: 12097-100.
- 5. Ehrhardt, C. *et al.* (2007) A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Res. 76: 38-47.
- 6. Pauli, E.K. *et al.* (2008) Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression. <u>PLoS Pathog. 4(11): e1000196.</u>
- 7. Nencioni, L. *et al.* (2009) Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: impact on virally induced apoptosis and viral replication. <u>J Biol Chem.</u> 284: 16004-15.
- 8. Jamali, A. *et al.* (2010) A DNA vaccine-encoded nucleoprotein of influenza virus fails to induce cellular immune responses in a diabetic mouse model. <u>Clin Vaccine Immunol. 17:</u> 683-7.
- 9. Seitz, C. *et al.* (2010) High yields of influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. <u>J Gen Virol. 91:</u> 1754-63.
- 10. Luig, C. *et al.* (2010) MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. <u>FASEB J. 24: 4068-77.</u>
- 11. Shu, Y. *et al.* (2010) Avian influenza A(H5N1) viruses can directly infect and replicate in human gut tissues. <u>J Infect Dis. 201: 1173-7.</u>
- 12. Gao, R. *et al.* (2010) A systematic molecular pathology study of a laboratory confirmed H5N1 human case. <u>PLoS One. 5: e13315.</u>
- 13. Matarrese, P. *et al.* (2011) Pepstatin A alters host cell autophagic machinery and leads to a decrease in influenza A virus production. <u>J Cell Physiol. 226 (12): 3368-77.</u>
- 14. Gabay, C. *et al.* (2011) Impact of synthetic and biologic disease-modifying antirheumatic drugs on antibody responses to the AS03-adjuvanted pandemic influenza vaccine: a prospective, open-label, parallel-cohort, single-center study. <u>Arthritis Rheum. 63</u> (6): 1486-96.

- 15. Hrincius, E.R. *et al.* (2011) Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production. Cell Microbiol. 13: 1907-19.
- 16. Calmy, A. *et al.* (2012) Strong serological responses and HIV RNA increase following AS03-adjuvanted pandemic immunization in HIV-infected patients. <u>HIV Med. 13 (4):</u> 207-18.
- 17. Koerner, I. *et al.* (2012) Altered receptor specificity and fusion activity of the haemagglutinin contribute to high virulence of a mouse-adapted influenza A virus. <u>J Gen Virol. 93 (Pt 5): 970-9.</u>
- 18. Hassan, I.H. *et al.* (2012) Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J Biol Chem. 287 (7): 4679-89.
- 19. Matthaei M *et al.* (2013) Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN- α/β responses that distinctively affect viral propagation in human cells. PLoS One. 8 (2): e56659.
- 20. Dick, A. *et al.* (2015) Role of nucleotide binding and GTPase domain dimerization in dynamin-like myxovirus resistance protein A for GTPase activation and antiviral activity. <u>J Biol Chem. 290 (20): 12779-92.</u>
- 21. Shoji, M. *et al.* (2015) Bakuchiol Is a Phenolic Isoprenoid with Novel Enantiomer-selective Anti-influenza A Virus Activity Involving Nrf2 Activation. <u>J Biol Chem. 290 (46):</u> 28001-17.
- 22. Wörmann, X. *et al.* (2016) Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells. <u>Virology. 492: 118-29.</u>
- 23. Kim HR *et al.* (2016) Ostrich (*Struthio camelus*) Infected with H5N8 Highly Pathogenic Avian Influenza Virus in South Korea in 2014. <u>Avian Dis. 60 (2): 535-9.</u>
- 24. Thulasi Raman, S.N. *et al.* (2016) DDX3 Interacts with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation. <u>J Virol. 90 (7): 3661-75.</u>
- 25. Sadewasser, A. *et al.* (2017) Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells. <u>Mol Cell Proteomics</u>. 16 (5): 728-42.
- 26. Sid, H. *et al.* (2017) Interaction of Influenza A Viruses with Oviduct Explants of Different Avian Species. <u>Front Microbiol. 8: 1338.</u>
- 27. Youchan, B. *et al.* (2018) Pathological lesions and antigen localization in chicken, ducks and Japanese quail naturally infected by novel highly pathogenic avian influenza (H5N6), Korea, 2016 <u>J Prev Vet Med. 42 (3): 91-8.</u>
- 28. Mayr, J. *et al.* (2018) Unravelling the Role of O-glycans in Influenza A Virus Infection. Sci Rep. 8 (1): 16382.
- 29. Prokopyeva, E.A. *et al.* (2019) Pathology of A(H5N8) (Clade 2.3.4.4) Virus in Experimentally Infected Chickens and Mice. <u>Interdiscip Perspect Infect Dis. 2019:</u> 4124865.
- 30. MacKerracher, A. *et al.* (2022) PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. Eur J Pharm Sci. : 106209.
- 31. Kühnl, A. *et al.* (2018) Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. <u>mBio. 9 (4):</u> e01345-18.
- 32. Forbester, J.L. et al. (2020) IRF5 Promotes Influenza Virus-Induced Inflammatory

Responses in Human Induced Pluripotent Stem Cell-Derived Myeloid Cells and Murine Models. J Virol. 94 (9): e00121-20.

Storage

This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C.

Avoid repeated freezing and thawing as this may denature the antibody. Storage in frost-free freezers is not recommended.

Guarantee

12 months from date of despatch

Material Safety Datasheet documentation #10040 available at: https://www.bio-rad-antibodies.com/SDS/MCA400 10040

Related Products

Regulatory

Recommended Secondary Antibodies

Rabbit Anti Mouse IgG (STAR12...)

Goat Anti Mouse IgG IgA IgM (STAR87...)

RPE

Goat Anti Mouse IgG (STAR76...)

RPE

Goat Anti Mouse IgG (STAR70...)

Goat Anti Mouse IgG (H/L) (STAR117...) Alk. Phos., DyLight®488, DyLight®550,

For research purposes only

DyLight®650, DyLight®680, DyLight®800,

FITC, HRP

Rabbit Anti Mouse IgG (STAR9...) <u>FITC</u>
Goat Anti Mouse IgG (STAR77...) <u>HRP</u>

Goat Anti Mouse IgG (Fc) (STAR120...) FITC, HRP

Rabbit Anti Mouse IgG (STAR13...) HRP

North & South Tel: +1 800 265 7376

America Fax: +1 919 878 3751

Worldwide

Tel: +44 (0)1865 852 700 Fax: +44 (0)1865 852 739 Europe

Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50

 $\begin{tabular}{ll} Email: antibody_sales_us@bio-rad.com \\ \end{tabular} Email: antibody_sales_uk@bio-rad.com \\ \end{tabular}$

Email: antibody_sales_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M418829:230427'

Printed on 13 Mar 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint