

Datasheet: MCA2806SBV610

Description:	MOUSE ANTI HUMAN CD69:StarBright Violet 610		
Specificity:	CD69		
Other names:	AIM		
Format:	StarBright Violet 610		
Product Type:	Monoclonal Antibody		
Clone:	FN50		
Isotype:	IgG1		
Quantity:	100 TESTS/0.5ml		

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Flow Cytometry	•			Neat

Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.

Human				
N.B. Antibody reactive reactivity is derived from	ity and working condition testing within our le	ions may vary betw aboratories, peer-re	veen species. Cross eviewed publications o	
Purified IgG conjugated to StarBright Violet 610 - liquid				
Fluorophore	Excitation Max (nm)	Emission Max (nn	n)	
StarBright Violet 610	403	607		
Purified IgG prepared supernatant	d by affinity chromatog	raphy on Protein G	from tissue culture	
	Reacts with: Baboon, N.B. Antibody reactive reactivity is derived free personal communicate further information. Purified IgG conjugate Fluorophore StarBright Violet 610 Purified IgG prepared	Reacts with: Baboon, Chimpanzee, Cynome N.B. Antibody reactivity and working conditions reactivity is derived from testing within our lipersonal communications from the originate further information. Purified IgG conjugated to StarBright Violet Fluorophore Excitation Max (nm) StarBright Violet 610 403 Purified IgG prepared by affinity chromatoge	Reacts with: Baboon, Chimpanzee, Cynomolgus monkey, Rhe N.B. Antibody reactivity and working conditions may vary between reactivity is derived from testing within our laboratories, peer-repersonal communications from the originators. Please refer to further information. Purified IgG conjugated to StarBright Violet 610 - liquid Fluorophore Excitation Max (nm) Emission Max (nm) StarBright Violet 610 403 607 Purified IgG prepared by affinity chromatography on Protein Grant Protein Gran	

Preservative Stabilisers

0.09% Sodium Azide (NaN₃)1% Bovine Serum Albumin

0.1% Pluronic F680.1% PEG 33500.05% Tween 20

Immunogen

Activated human B-cells.

External Database Links

UniProt:

Q07108 Related reagents

Entrez Gene:

969 CD69 Related reagents

Synonyms

CLEC₂C

Specificity

Mouse anti Human CD69 antibody, clone FN50 recognizes the human early activation antigen CD69, also known as activation inducer molecule (AIM), Early T-cell activation antigen p60, EA1 or MLR-3. CD69 is a 199 amino acid single pass type II transmembrane glycoprotein of ~30 kDa containing a single C-type lectin domain and a single potential N-glycosylation site. CD69 is expressed as a disulphide bond linked homodimer of ~60 kDa (López-Cabrera et al. 1993).

CD69 is a marker of early activation expressed by B and T lymphocytes, natural killer cells(<u>Werfel 1997</u>), neutrophils, thymocytes and platelets (<u>Gaviol et al. 1992</u>). Expression of CD69 is rapidly induced on activation by infection or chronic inflamation (<u>Sancho et al. 2005</u>). Multiple dimeric glycoforms of CD69 can be formed through differential glycosylation of the monomeric subunits (<u>Vance et al. 1997</u>).

Mouse anti Human CD69 , clone FN50 is useful for the detection of CD69 by flow cytometry and immunohistochemistry on frozen tissue sections.

Flow Cytometry

Use 5μ I of the suggested working dilution to label 10^6 cells in 100μ I. Best practices suggest a 5 minutes centrifugation at 6,000g prior to sample application.

References

- 1. Holte, H. *et al.* (1989) Ki67 and 4F2 antigen expression as well as DNA synthesis predict survival at relapse/tumour progression in low-grade B-cell lymphoma. <u>Int J Cancer.</u> 44 (6): 975-80.
- 2. Herberth, M. *et al.* (2010) Differential effects on T-cell function following exposure to serum from schizophrenia smokers. <u>Mol Psychiatry</u>. 15 (4): 364-71.
- 3. Schaeuble, K. *et al.* (2011) Cross-talk between TCR and CCR7 signaling sets a temporal threshold for enhanced T lymphocyte migration. <u>J Immunol</u>. 187 (11): 5645-52.
- 4. Sela, M. *et al.* (2011) Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells. EMBO J. 30 (15): 3160-72.
- 5. Garbe, Y. *et al.* (2011) Semiallogenic fusions of MSI(+) tumor cells and activated B cells induce MSI-specific T cell responses. <u>BMC Cancer. 11: 410.</u>
- 6. Schwitalle, Y. et al. (2004) Immunogenic peptides generated by frameshift mutations in

DNA mismatch repair-deficient cancer cells. Cancer Immun. 4: 14.

- 7. Sutavani, R.V. et al. (2013) CD55 Costimulation Induces Differentiation of a Discrete T Regulatory Type 1 Cell Population with a Stable Phenotype. J Immunol. 191: 5895-903.
- 8. Walter, G.J. et al. (2013) Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45ro+CD25+CD127(low) regulatory T cells. Arthritis Rheum. 65: 627-38.
- 9. Kuric, E. et al. (2017) Demonstration of Tissue Resident Memory CD8 T Cells in Insulitic Lesions in Adult Patients with Recent-Onset Type 1 Diabetes. Am J Pathol. 187 (3): 581-8.
- 10. Karnell, F.G. et al. (2017) Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 189 (3): 268-278.
- 11. Rossatti, P. et al. (2022) Rapid increase in transferrin receptor recycling promotes adhesion during T cell activation. BMC Biol. 20 (1): 189.

Storage	Store at +4°C. DO NOT FREEZE.
	This product should be stored undiluted.
Guarantee	12 months from date of despatch
Acknowledgements	This product is covered by U.S. Patent No. 10,150,841 and related U.S. and foreign counterparts
Health And Safety	Material Safety Datasheet documentation #20471 available at:
Information	https://www.bio-rad-antibodies.com/SDS/MCA2806SBV610
	20471
Regulatory	For research purposes only

Related Products

Recommended Useful Reagents

HUMAN SEROBLOCK (BUF070A) HUMAN SEROBLOCK (BUF070B)

North & South Tel: +1 800 265 7376 America

Worldwide

Tel: +44 (0)1865 852 700 Fax: +44 (0)1865 852 739

Europe

Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50

Fax: +1 919 878 3751

Email: antibody sales us@bio-rad.com

Email: antibody sales uk@bio-rad.com

Email: antibody sales de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M422859:231003'

Printed on 15 May 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint