Datasheet: MCA2538T BATCH NUMBER 190712R | Description: | MOUSE ANTI HUMAN CD79a | | |----------------------|------------------------|--| | Specificity: | CD79a | | | Other names: | MB-1 | | | Format: | Purified | | | Product Type: | Monoclonal Antibody | | | Clone: | HM57 | | | Isotype: | IgG1 | | | Quantity: | 25 μg | | | | | | # **Product Details** ### **Applications** This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. | | Yes | No | Not Determined | Suggested Dilution | |--------------------------------|-----|----|----------------|--------------------| | Flow Cytometry (1) | | | | 1/10 - 1/50 | | Immunohistology - Frozen | • | | | | | Immunohistology - Paraffin (2) | | | | 1/100 - 1/500 | | ELISA | | | | | | Immunoprecipitation | | | • | | | Western Blotting | | | | | Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. - (1)Membrane permeabilisation is required for this application. Bio-Rad recommends the use of Leucoperm[™] (Product Code <u>BUF09</u>) for this purpose. - (2)This product requires antigen retrieval using heat treatment prior to staining of paraffin sections. Sodium citrate buffer pH 6.0 is recommended for this purpose. reactivity is derived from testing within our laboratories, peer-reviewed publications or deer. | Target Species | Human | |-----------------------------|---| | Species Cross
Reactivity | Reacts with: Mouse, Rabbit, Horse, Pig, Monkey, Rat, Bovine, Guinea Pig, Fallow | | | American Bison, Red deer, Ferret, Goat | | | N.B. Antibody reactivity and working conditions may vary between species. Cross | | | further information. | |--------------------------------------|---| | Product Form | Purified IgG - liquid | | Preparation | Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant | | Buffer Solution | Phosphate buffered saline | | Preservative
Stabilisers | 0.09% Sodium Azide (NaN ₃) | | Carrier Free | Yes | | Approx. Protein Concentrations | IgG concentration 1.0mg/ml | | Immunogen | Synthetic peptide corresponding to 202-216 amino acid sequence of human mb-1 | | External Database
Links | UniProt: P11912 Related reagents Entrez Gene: 973 CD79A Related reagents | | Synonyms | IGA, MB1 | | RRID | AB_1102329 | | Fusion Partners | Spleen cells from immunised Balb/c mice were fused with cells of the Sp2/0 myeloma cell line | | Specificity | Mouse anti Human CD79a antibody, clone HM57 recognizes an epitope within the cytoplasmic domain of CD79a. CD79a, also known as mb-1, is a 45 kDa protein that is expressed by B lymphocytes during differentiation from early pre-B cell stage through to plasma cells. | | | The CD79a molecule associates with CD79b (B29) to form a heterodimer that is non-covalently linked to surface immunoglobulin, forming the B-cell receptor (BCR) complex. The CD79a/CD79b heterodimers are also necessary for intracellular signaling following antigen-binding to surface immunoglobulin. | | Flow Cytometry | Use 10ul of the suggested working dilution to label 1x10 ⁶ cells in 100ul. | | Histology Positive
Control Tissue | Human tonsil | personal communications from the originators. Please refer to references indicated for #### References - 1. Mason, D.Y. *et al.* (1991) The IgM-associated protein mb-1 as a marker of normal and neoplastic B cells. <u>J Immunol. 147 (11): 2474-82.</u> - 2. Jones, M. *et al.* (1993) Detection of T and B cells in many animal species using cross-reactive anti-peptide antibodies. <u>J Immunol</u>. 150 (12): 5429-35. - 3. Christgau, M. *et al.* (1998) Characterization of immunocompetent cells in the diseased canine periodontium. <u>J Histochem Cytochem. 46: 1443-54.</u> - 4. Spaas, J.H. *et al.* (2013) Culture and characterisation of equine peripheral blood mesenchymal stromal cells. <u>Vet J. 195 (1): 107-13.</u> - 5. Nelson, D.D. *et al.* (2010) CD8(+)/perforin(+)/WC1(-) gammadelta T cells, not CD8(+) alphabeta T cells, infiltrate vasculitis lesions of American bison (*Bison bison*) with experimental sheep-associated malignant catarrhal fever. <u>Vet Immunol Immunopathol.</u> 136: 284-91. - 6. De Schauwer, C. *et al.* (2012) In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. <u>Cytometry A. 81 (4): 312-23.</u> - 7. Long, H. *et al.* (2016) Polyostotic Lymphoma in a Ferret (*Mustela putorius furo*). <u>J Comp Pathol. 154 (4): 341-4.</u> - 8. Schinköthe J >et al. (2016) Characterization of tuberculous granulomas in different stages of progression and associated tertiary lymphoid tissue in goats experimentally infected with *Mycobacterium avium* subsp. *hominissuis*. Comp Immunol Microbiol Infect Dis. 47: 41-51. - 9. Bozkurt, Y.A., *et al.* (2014) Histological and immunohistological studies of the structure of lymph nodes in Kilis goats. <u>Biotech Histochem. 89(6):440-5.</u> - 10. Froment R & Bédard C (2016) Marked hyperphosphatasemia associated with an acute leukemia in a Great Dane. Vet Clin Pathol. Aug 18. [Epub ahead of print] - 11. Aresu, L. *et al.* (2015) Canine indolent and aggressive lymphoma: clinical spectrum with histologic correlation. <u>Vet Comp Oncol. 13 (4): 348-62.</u> - 12. Poggi, A. *et al.* (2015) Flow cytometric evaluation of ki67 for the determination of malignancy grade in canine lymphoma. <u>Vet Comp Oncol.</u> 13 (4): 475-80. - 13. Gelain ME *et al.* (2014) CD44 in canine leukemia: analysis of mRNA and protein expression in peripheral blood. Vet Immunol Immunopathol. 159 (1-2): 91-6. - 14. Paebst, F. *et al.* (2014) Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. <u>Cytometry A.</u> 85 (8): 678-87. - 15. De Schauwer, C. *et al.* (2014) Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. <u>Stem Cell Res</u> Ther. 5 (1): 6. - 16. Claessen, C. *et al.* (2015) Equid herpesvirus 1 (EHV1) infection of equine mesenchymal stem cells induces a pUL56-dependent downregulation of select cell surface markers. <u>Vet Microbiol. 176 (1-2): 32-9.</u> - 17. Novacco, M. *et al.* (2015) Prognostic factors in canine acute leukaemias: a retrospective study. <u>Vet Comp Oncol. Jan 26. [Epub ahead of print]</u> - 18. Hillmann, A. *et al.* (2016) Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model. <u>Cell Transplant</u>. 25 (1): 109-24. - 19. Moore, P.F. *et al.* (2013) Canine inflamed nonepitheliotropic cutaneous T-cell lymphoma: a diagnostic conundrum. Vet Dermatol. 24 (1): 204-11.e44-5. - 20. Nagata, K. et al. (2017) Epstein-Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease. <u>Viral Immunol. Mar 23. [Epub ahead of print]</u> 21. Wessels, M. *et al.* (2017) Systemic necrotizing polyarteritis in three weaned lambs from one flock. J Vet Diagn Invest. May 1:1040638717709856. [Epub ahead of print] 22. Uitterdijk, A. *et al.* (2017) Time course of VCAM-1 expression in reperfused myocardial infarction in swine and its relation to retention of intracoronary administered bone marrow-derived mononuclear cells. PLoS One. 12 (6): e0178779. **Further Reading** 1. Piriou-Guzylack, L. (2008) Membrane markers of the immune cells in swine: an update. Vet Res. 39: 54. **Storage** Store at +4°C or at -20°C if preferred. Storage in frost-free freezers is not recommended. This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. Guarantee 12 months from date of despatch Health And Safety Information Material Safety Datasheet documentation #10040 available at: https://www.bio-rad-antibodies.com/SDS/MCA2538T 10040 Regulatory For research purposes only # **Related Products** ## **Recommended Secondary Antibodies** Rabbit Anti Mouse IgG (STAR12...) RPE Goat Anti Mouse IgG IgA IgM (STAR87...) HRP Goat Anti Mouse IgG (STAR76...) RPE Goat Anti Mouse IgG (STAR70...) FITC Goat Anti Mouse IgG (H/L) (STAR117...) Alk. Phos., DyLight®488, DyLight®550, DyLight®650, DyLight®680, DyLight®800, FITC, HRP Goat Anti Mouse IgG (STAR77...) HRP Rabbit Anti Mouse IgG (STAR9...) FITC Goat Anti Mouse IgG (Fc) (STAR120...) FITC, HRP Rabbit Anti Mouse IgG (STAR13...) HRP **Recommended Negative Controls** Fax: +1 919 878 3751 MOUSE IgG1 NEGATIVE CONTROL (MCA928) North & South Tel: +1 800 265 7376 America Worldwide Tel: +44 (0)1865 852 700 Fax: +44 (0)1865 852 739 Europe Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50 Email: antibody_sales_us@bio-rad.com Email: antibody_sales_uk@bio-rad.com Email: antibody_sales_de@bio-rad.com ## Printed on 07 Jun 2024 © 2024 Bio-Rad Laboratories Inc | Legal | Imprint