

Datasheet: MCA2235A700

Description:	RAT ANTI MOUSE CD206:Alexa Fluor® 700
Specificity:	CD206
Other names:	MANNOSE RECEPTOR C TYPE 1
Format:	ALEXA FLUOR® 700
Product Type:	Monoclonal Antibody
Clone:	MR5D3
Isotype:	lgG2a
Quantity:	100 TESTS/1ml

Product Details

Applications	This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit <u>www.bio-</u>						
	rad-antibodies.com/protocols.						
	raa antisoaroorooni, pro	Yes	No	Not Determined	Suggested Dilution		
	Flow Cytometry (1)	-			Neat		
	Where this product has	s not been te	sted for	use in a particular tecl	nnique this does not		
	necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.						
	(1) CD206 is expressed weakly at the cell surface. Staining may be increased following membrane permeabilisation. We recommend the use of Leucoperm						
	(Product Code <u>BUF0</u>	-					
Target Species	Mouse						
Product Form	Purified IgG conjugate	d to Alexa Fl	uor® 700) - liquid			
Max Ex/Em	Fluorophore	Excitation M	ax (nm)	Emission Max (nm)			
	Alexa Fluor®700	702	- ()	723			
Preparation	Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant						
Buffer Solution	Phosphate buffered sa	line					
Preservative Stabilisers	0.09% sodium azide (N 1% bovine serum albu	0,					

Approx. Protein Concentrations	IgG concentration 0.05 mg/ml
Immunogen	Chimaeric CRD4-7-Fc protein
External Database Links	UniProt: Q61830 Related reagents Entrez Gene: 17533 Mrc1 Related reagents
Fusion Partners	Spleen cells from immunized Fischer rats were fused with cells of the Y3 myeloma cell line
Specificity	Rat anti Mouse CD206 antibody, clone MR5D3 recognizes the mouse mannose receptor, a ~175 kDa type 1 membrane glycoprotein that is also known as CD206. CD206 is expressed on most tissue macrophages, certain endothelial cells and <i>in vitro</i> derived dendritic cells (Zamze <i>et al.</i> 2002).
	The mannose receptor, CD206, is composed of a N-terminal cysteine-rich domain, a fibronectin type II domain, eight tandemly arranged C-type lectin domains (CTLD), a transmembrane domain, and a cytoplasmic domain. The terminal cysteine-rich domain binds sulfated sugars, and the CTLD recognizes carbohydrates terminating in mannose, fucose and N-acetylglucosamine, all sugars found on microorganisms and on some endogenous proteins (<u>Su <i>et al.</i> 2005</u>).
	Rat anti mouse CD206 antibody, clone MR5D3 has been reported to be non-inhibitory for the binding of the mannose receptor to carbohydrate ligands (<u>Zamze <i>et al.</i> 2002</u>). Clone MR5D3 has also been shown to work in western blotting (<u>Martinez-Pomares <i>et al.</i> 2003</u> and <u>Su <i>et al.</i> 2005</u>).
Flow Cytometry	Use 10µl of the suggested working dilution to label 10 ⁶ cells in 100µl. The Fc region of monoclonal antibodies may bind to cells expressing low affinity Fc receptors. This may be reduced by using SeroBlock FcR (<u>BUF041A/BUF041B</u>).
References	 Martinez-Pomares, L. <i>et al.</i> (2003) Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. J Leukoc Biol. 73 (5): <u>604-13.</u> Su, Y. <i>et al.</i> (2005) Glycosylation influences the lectin activities of the macrophage mannose receptor. J Biol Chem. 280: 32811-20. Hassan, M.F. <i>et al.</i> (2006) The <i>Schistosoma mansoni</i> hepatic egg granuloma provides a favorable microenvironment for sustained growth of <i>Leishmania donovani</i>. Am J Pathol. <u>169: 943-53.</u> Devey, L. <i>et al.</i> (2009) Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a heme oxygenase-1-dependent mechanism. Mol Ther. <u>17: 65-72.</u> Vetrone, S.A. <i>et al.</i> (2009) Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest. <u>119:</u>

<u>1583-94.</u>

6. Autenrieth, S.E. & Autenrieth, I.B. (2009) Variable antigen uptake due to different expression of the macrophage mannose receptor by dendritic cells in various inbred mouse strains. <u>Immunology 127: 523-9.</u>

7. Westcott, D.J. *et al.* (2009) MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. <u>J Exp Med. 206: 3143-56.</u>

8. Nair, M.G. *et al.* (2009) Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type 2 inflammation in the lung. <u>J Exp Med. 206: 937-52.</u>

9. Takagi, H. *et al.* (2009) Cooperation of specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) and complement receptor type 3 (CR3) in the uptake of oligomannose-coated liposomes by macrophages. <u>Glycobiology 19: 258-66.</u>

10. Bacci, M. *et al.* (2009) Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. <u>Am J Pathol. 175: 547-56.</u>

11. Hawkes, C.A. *et al.* (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. <u>Proc Natl Acad Sci USA106:</u> <u>1261-6.</u>

12. deSchoolmeester, M.L. *et al.* (2009) The mannose receptor binds *Trichuris muris* excretory/secretory proteins but is not essential for protective immunity. <u>Immunology 126:</u> 246-55.

 Famulski, K.S. *et al.* (2010) Alternative macrophage activation-associated transcripts in T-cell-mediated rejection of mouse kidney allografts. <u>Am J Transplant 10 (3): 490-7.</u>
 Hardison, S.E. *et al.* (2010) Pulmonary infection with an interferon-gamma-producing *Cryptococcus neoformans* strain results in classical macrophage activation and protection.

Am J Pathol. 176: 774-85.

15. Lin, J.S. *et al.* (2010) Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast. <u>J Leukoc Biol. 88:</u> <u>95-106.</u>

Chavele, K.M. *et al.* (2010) Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. <u>J Clin Invest. 120: 1469-78.</u>
 Hardison, S.E. *et al.* (2010) Interleukin-17 Is Not Required for Classical Macrophage Activation in a Pulmonary Mouse Model of *Cryptococcus neoformans* Infection. <u>Infect Immun. 78: 5341-51.</u>

Asano, J. *et al.* (2010) Nucleotide oligomerization binding domain-like receptor signaling enhances dendritic cell-mediated cross-priming *in vivo*. J Immunol. 184: 736-45.
 Dewals, B.G. *et al.* (2010) IL-4Ralpha-independent expression of mannose receptor and Ym1 by macrophages depends on their IL-10 responsiveness. <u>PLoS Negl Trop Dis. 4</u> (5): e689.

20. Zehner, M. *et al.* (2011) Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. <u>Proc Natl Acad Sci USA 108: 9933-8.</u>

21. Geier, H. & Celli, J. (2011) Phagocytic receptors dictate phagosomal escape and intracellular proliferation of *Francisella tularensis*. Infect Immun. 79 (6): 2204-14.

22. Deepe, G.S. Jr. & Buesing, W.R. (2011) Deciphering the Pathways of Death of *Histoplasma capsulatum*-Infected Macrophages: Implications for the Immunopathogenesis of Early Infection. <u>J Immunol. 188: 334-44</u>.

23. Kondo, Y. et al. (2011) Macrophages counteract demyelination in a mouse model of

globoid cell leukodystrophy. J Neurosci. 31: 3610-24.

24. Sindrilaru, A. *et al.* (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. <u>J Clin Invest. 121:</u> <u>985-97.</u>

25. Schneider, D. *et al.* (2012) Neonatal rhinovirus infection induces mucous metaplasia and airways hyperresponsiveness. <u>J Immunol. 188 (6): 2894-904.</u>

26. Joyce, K.L. *et al.* (2012) Using eggs from *Schistosoma mansoni* as an *in vivo* model of helminth-induced lung inflammation. <u>J Vis Exp. Jun 5 (64): e3905.</u>

27. Fridlender, Z.G. *et al.* (2013) Using macrophage activation to augment immunotherapy of established tumours. <u>Br J Cancer. 108 (6): 1288-97.</u>

28. Eskilsson, A. *et al.* (2014) Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol. 522 (14): 3229-44.

29. Espagnolle, N. *et al.* (2014) Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells. <u>Cancers (Basel). 6 (1): 472-90.</u>

30. Sameshima, A. *et al.* (2015) Teneligliptin improves metabolic abnormalities in a mouse model of postmenopausal obesity. <u>J Endocrinol. 227 (1): 25-36.</u>

31. Manning, C.N. *et al.* (2015) Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation *in vitro*. <u>Stem Cell Res</u> <u>Ther. 6: 74.</u>

32. Verheijden, S. *et al.* (2015) Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β -oxidation deficiency. <u>Glia. 63 (9):</u> 1606-20.

33. O'Flaherty, B.M. *et al.* (2015) CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice. <u>PLoS</u> <u>One. 10 (8): e0135719.</u>

34. Øie, C.I. *et al.* (2016) FITC Conjugation Markedly Enhances Hepatic Clearance of N-Formyl Peptides. <u>PLoS One. 11 (8): e0160602.</u>

35. Litvack ML *et al.* (2016) Alveolar-like Stem Cell-derived Myb(-) Macrophages Promote Recovery and Survival in Airway Disease. <u>Am J Respir Crit Care Med. 193 (11): 1219-29.</u>
36. Eßlinger M *et al.* (2016) Schizophrenia associated sensory gating deficits develop after adolescent microglia activation. Brain Behav Immun. 58: 99-106.

37. Hosono, K. *et al.* (2016) Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice. <u>PLoS One. 11 (10): e0162532.</u>

38. Rahman, K. *et al.* (2017) Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest. 127 (8): 2904-2915.

39. Brodaczewska, K. *et al.* (2017) Biodegradable Chitosan Decreases the Immune Response to *Trichinella spiralis.* in Mice. <u>Molecules. 22(11):2008.</u>

40. Braune, J. *et al.* (2017) IL-6 Regulates M2 Polarization and Local Proliferation of Adipose Tissue Macrophages in Obesity. <u>J Immunol. 198 (7): 2927-34.</u>

41. Bongiorno, E.K. *et al.* (2017) Type 1 Immune Mechanisms Driven by the Response to Infection with Attenuated Rabies Virus Result in Changes in the Immune Bias of the Tumor Microenvironment and Necrosis of Mouse GL261 Brain Tumors. <u>J Immunol. 198</u> (<u>11): 4513-23.</u>

42. Orsini, F. *et al.* (2018) Mannose-Binding Lectin Drives Platelet Inflammatory Phenotype and Vascular Damage After Cerebral Ischemia in Mice via IL (Interleukin)-1α.

Arterioscler Thromb Vasc Biol. 38 (11): 2678-90.

43. He, S. *et al.* (2018) Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. <u>Scand J Immunol. 87 (4): e12648.</u>
44. Micanovic, R. *et al.* (2018) Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney. <u>J Am Soc Nephrol. 29 (3): 841-856.</u>

45. Igarashi, Y. *et al.* (2018) Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. <u>Sci Rep. 8 (1): 14567.</u>

46. Han, Y.H. *et al.* (2019) A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. <u>J Clin Invest. 130.</u> pii: 124219

47. Cao, W. *et al.* (2019) Hoxa5 alleviates obesity-induced chronic inflammation by reducing ER stress and promoting M2 macrophage polarization in mouse adipose tissue. J Cell Mol Med. 23 (10): 7029-42.

48. Sui, A. *et al.* (2020) Inhibiting NF-κB Signaling Activation Reduces Retinal Neovascularization by Promoting a Polarization Shift in Macrophages. <u>Invest Ophthalmol</u> <u>Vis Sci. 61 (6): 4.</u>

49. Welc, S.S. *et al.* (2020) Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. <u>Exp Physiol. 105 (1): 132-47.</u>
50. Qiao, X. *et al.* (2020) Magnesium-doped Nanostructured Titanium Surface Modulates Macrophage-mediated Inflammatory Response for Ameliorative Osseointegration. <u>Int J Nanomedicine. 15: 7185-98.</u>

51. Fan, A. *et al.* (2020) High-salt diet decreases mechanical thresholds in mice that is mediated by a CCR2-dependent mechanism. <u>J Neuroinflammation</u>. <u>17 (1): 179.</u>

52. Shiau, D.J. *et al.* (2020) Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis. <u>Sci Rep. 10 (1):</u> <u>13582.</u>

53. Kishimoto, S. *et al.* (2020) Surgical Injury and Ischemia Prime the Adipose Stromal Vascular Fraction and Increase Angiogenic Capacity in a Mouse Limb Ischemia Model. <u>Stem Cells Int. 2020: 7219149.</u>

54. Kalovyrna, N. *et al.* (2020) A 3'UTR modification of the TNF- α mouse gene increases peripheral TNF- α and modulates the Alzheimer-like phenotype in 5XFAD mice. <u>Sci Rep.</u> 10 (1): 8670.

55. Lei, Y. *et al.* (2021) miR-129-5p Ameliorates Ischemic Brain Injury by Binding to SIAH1 and Activating the mTOR Signaling Pathway. <u>J Mol Neurosci. 71 (9): 1761-71.</u>

56. Ackermann, J. *et al.* (2021) Myeloid Cell-Specific IL-4 Receptor Knockout Partially Protects from Adipose Tissue Inflammation. <u>J Immunol. Nov 17;ji2100699.</u>

57. Flores, I. *et al.* (2021) Myeloid cell-mediated targeting of LIF to dystrophic muscle causes transient increases in muscle fiber lesions by disrupting the recruitment and dispersion of macrophages in muscle. <u>Hum Mol Genet. ddab230.</u>

58. Lindhorst, A. *et al.* (2021) Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. <u>Cell Death Dis. 12 (6): 579.</u>

59. Catrysse, L. *et al.* (2021) A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. <u>Cell</u> <u>Rep. 36 (12): 109748.</u>

60. Zhang, H. *et al.* (2021) Circulating Pro-Inflammatory Exosomes Worsen Stroke Outcomes in Aging. <u>Circ Res. 129 (7): e121-e140.</u>

product solely in research, excluding contract research or any fee for service research, and the buyer must not sell or otherwise transfer this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; (c) manufacturing or quality assurance or quality control, or (d) resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad CA 92008 USA or outlicensing@thermofisher.com

Health And Safety Information	Material Safety Datasheet documentation #10041 available at: https://www.bio-rad-antibodies.com/SDS/MCA2235A700 10041
Regulatory	For research purposes only

Related Products

Recommended Negative Controls

RAT IgG2a NEGATIVE CONTROL:Alexa Fluor® 700 (MCA1212A700)

Recommended Useful Reagents

MOUSE SEROBLOCK FcR (BUF041A) MOUSE SEROBLOCK FcR (BUF041B)

North & South	Tel: +1 800 265 7376	Worldwide	Tel: +44 (0)1865 852 700	Europe	Tel: +49 (0) 89 8090 95 21
America	Fax: +1 919 878 3751		Fax: +44 (0)1865 852 739		Fax: +49 (0) 89 8090 95 50
	Email: antibody_sales_us@bio-ra	id.com	Email: antibody_sales_uk@bio-ra	ad.com	Email: antibody_sales_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M413422:221122'

Printed on 12 Aug 2023

© 2023 Bio-Rad Laboratories Inc | Legal | Imprint