

Datasheet: MCA1783 BATCH NUMBER 164179

Description:	MOUSE ANTI BOVINE INTERFERON GAMMA
Specificity:	IFN GAMMA
Other names:	INTERFERON GAMMA
Format:	Purified
Product Type:	Monoclonal Antibody
Clone:	CC302
Isotype:	lgG1
Quantity:	0.5 mg

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Flow Cytometry (1)				1/100 - 1/500
Immunohistology - Frozen				
Immunohistology - Paraffin				
ELISA	•			
Immunoprecipitation				
Western Blotting			•	

Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.

(1) Membrane permeabilization is required for this application. The use of Leucoperm (Product Code <u>BUF09</u>) is recommended for this purpose.

Target Species	Bovine
Species Cross Reactivity	Reacts with: Human, Pig, Dog, Horse, Sheep, Goat, Dolphin, Ferret, Mink, Fin Whale, Rabbit
	Based on sequence similarity, is expected to react with:Mustelid
	N.B. Antibody reactivity and working conditions may vary between species. Cross
	reactivity is derived from testing within our laboratories, peer-reviewed publications or
	personal communications from the originators. Please refer to references indicated for
	further information.

Product Form	Purified IgG - liquid	
Preparation	Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant	
Buffer Solution	Phosphate buffered saline	
Preservative Stabilisers	0.09% sodium azide (NaN ₃)	
Carrier Free	Yes	
Approx. Protein Concentrations	IgG concentration 1.0 mg/ml	
External Database Links	UniProt: P07353 Related reagents Entrez Gene: 281237 IFNG Related reagents	
RRID	AB_2123454	
Fusion Partners	Spleen cells from immunized BALB/c mice were fused with cells of the mouse SP2/0 myeloma cell line.	
Specificity	Mouse anti Bovine IFN-γ antibody, clone CC302 recognizes bovine interferon-gamma, a 143 amino acid cytokine with potent activating, antiviral and anti proliferative properties, produced as a pro-peptide with an additional 23 amino acid N-terminal signal peptide sequence having a molecular weight of ~20 kDa. IFNγ is predominantly secreted by activated T lymphocytes in response to specific mitogens as a result of infection (Rhodes et al. 2000).	
	Mouse anti bovine γ interferon antibody, clone CC302 has been demonstrated to be reactive to a number of mammalian species including human, sheep, dog, pig, goat and mink (<u>Pedersen et al. 2002</u>). Mouse anti Bovine IFNγ antibody, clone CC302 has been used successfully for the evaluation of γ interferon levels in the sera of calves naturally infected with <i>M. avium.</i> subsp <i>paratuberculosis</i> (<u>Appana et al. 2013</u>) as a detection reagent using an ELISA.	
Flow Cytometry	Use 10µl of the suggested working dilution to label 1x10 ⁶ cells in 100µl	
ELISA	Biotinylated mouse anti bovine IFNy, clone CC302, may be used as the detection reagent in a sandwich ELISA with <u>purified mouse anti bovine IFNy</u> , clone CC330, as the capture reagent and <u>recombinant bovine IFNy</u> as the standard.	
References	1. Hasvold, H.J. <i>et al.</i> (2002) <i>In vitro</i> responses to purified protein derivate of caprine T lymphocytes following vaccination with live strains of <i>Mycobacterium avium</i> subsp	

- paratuberculosis. Vet Immunol Immunopathol. 90 (1-2): 79-89.
- 2. Mwangi, W. *et al.* (2002) DNA-encoded fetal liver tyrosine kinase 3 ligand and granulocyte macrophage-colony-stimulating factor increase dendritic cell recruitment to the inoculation site and enhance antigen-specific CD4⁺ T cell responses induced by DNA vaccination of outbred animals. <u>J Immunol. 169 (7): 3837-46.</u>
- 3. Pedersen, L.G. *et al.* (2002) Identification of monoclonal antibodies that cross-react with cytokines from different animal species. <u>Vet Immunol Immunopathol. 88 (3-4): 111-22.</u>
- 4. Aasted, B. *et al.* (2002) Cytokine profiles in peripheral blood mononuclear cells and lymph node cells from piglets infected in utero with porcine reproductive and respiratory syndrome virus. Clin Diagn Lab Immunol. 9 (6): 1229-34.
- 5. Cameron, C.M. *et al.* (2005) Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. <u>J Virol.</u> 79: 6052-67.
- 6. Reber, A.J. *et al.* (2006) Evaluation of multiple immune parameters after vaccination with modified live or killed bovine viral diarrhea virus vaccines. <u>Comp Immunol Microbiol Infect Dis.</u> 29 (1): 61-77.
- 7. Katepalli, M.P. *et al.* (2008) The effect of age and telomere length on immune function in the horse. <u>Dev Comp Immunol. 32 (12): 1409-15.</u>
- 8. Johnson, W.C. *et al.* (2008) Bovine WC1(-) gammadeltaT cells incubated with IL-15 express the natural cytotoxicity receptor CD335 (NKp46) and produce IFN-gamma in response to exogenous IL-12 and IL-18. <u>Dev Comp Immunol. 32 (8): 1002-10.</u>
- 9. Rutigliano, J.A. *et al.* (2008) Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection. <u>J Immunol Methods</u>. 336: 71-7.
- 10. Papadogiannakis, E.I. *et al.* (2009) Determination of intracellular cytokines IFN-γ and IL-4 in canine T lymphocytes by flow cytometry following whole-blood culture. <u>Can J Vet Res.</u> 73: 137-43.
- 11. Jensen, T.H. *et al.* (2009) Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper. <u>Vaccine</u>. 27: 5178-83.
- 12. Nielsen, L. *et al.* (2009) Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host. <u>J Gen Virol. 90:</u> 2157-65.
- 13. Martel, C.J. & Aasted, B. (2009) Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers. <u>Vet Immunol Immunopathol. 132:109-15.</u>
- 14. Lybeck, K.R. *et al.* (2009) Neutralization of interleukin-10 from CD14(+) monocytes enhances gamma interferon production in peripheral blood mononuclear cells from *Mycobacterium avium* subsp. *paratuberculosis*-infected goats. <u>Clin Vaccine Immunol. 16</u> (7): 1003-11.
- 15. Elhmouzi-Younes, J. *et al.* (2009) Bovine neonate natural killer cells are fully functional and highly responsive to interleukin-15 and to NKp46 receptor stimulation. <u>Vet Res. 40:</u> 54.
- 16. Gillan, S. *et al.* (2010) Identification of immune parameters to differentiate disease states among sheep infected with *Mycobacterium avium* subsp. paratuberculosis. <u>Clin Vaccine Immunol</u>. 17: 108-17.
- 17. Wagner, B. *et al.* (2010) Interferon-γ, interleukin-4 and interleukin-10 production by T helper cells reveals intact Th1 and regulatory TR1 cell activation and a delay of the Th2 cell response in equine neonates and foals. <u>Vet Res. 41: 47.</u>
- 18. Jaber, J.R. et al. (2010) Cross-reactivity of anti-human, anti-porcine and anti-bovine

- cytokine antibodies with cetacean tissues. J Comp Pathol. 143: 45-51.
- 19. Totté, P. *et al.* (2010) CD62L defines a subset of pathogen-specific bovine CD4 with central memory cell characteristics. <u>Dev Comp Immunol. 34 (2): 177-82.</u>
- 20. Contreras, V. *et al.* (2010) Existence of CD8α-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. <u>J Immunol</u>. 185: 3313-25.
- 21. de Mestre, A. *et al.* (2010) Split immunological tolerance to trophoblast. <u>Int J Dev Biol.</u> 54: 445-55.
- 22. Ferret-Bernard, S. *et al.* (2010) Cellular and molecular mechanisms underlying the strong neonatal IL-12 response of lamb mesenteric lymph node cells to R-848. <u>PLoS One.</u> 5: e13705.
- 23. Dewals, B.G., *et al.*I (2011) Malignant catarrhal fever induced by Alcelaphine herpesvirus 1 is characterized by an expansion of activated CD3+CD8+CD4- T cells expressing a cytotoxic phenotype in both lymphoid and non-lymphoid tissues <u>Vet Res.</u> 42(1): 95.
- 24. Whelan, A.O. *et al.* (2011) Development of an Antibody to Bovine IL-2 Reveals Multifunctional CD4 T(EM) Cells in Cattle Naturally Infected with Bovine Tuberculosis. PLoS One. 6: e29194.
- 25. Ferret-Bernard, S. *et al.* (2011) Mesenteric lymph node cells from neonates present a prominent IL-12 response to CpG oligodeoxynucleotide via an IL-15 feedback loop of amplification. <u>Vet Res. 42:19.</u>
- 26. Fellman, C.L. *et al.* (2011) Cyclosporine A affects the *in vitro* expression of T cell activation-related molecules and cytokines in dogs. <u>Vet Immunol Immunopathol. 140: 175-80.</u>
- 27. Sow, F.B. *et al.* (2011) Respiratory syncytial virus is associated with an inflammatory response in lungs and architectural remodeling of lung-draining lymph nodes of newborn lambs. Am J Physiol Lung Cell Mol Physiol. 300 (1): L12-24.
- 28. Skyberg, J.A. *et al.* (2011) Murine and bovine γδ T cells enhance innate immunity against *Brucella abortus* infections. <u>PLoS One. 6:e21978.</u>
- 29. Pillet, S. *et al.* (2011) Cellular immune response in the presence of protective antibody levels correlates with protection against 1918 influenza in ferrets. <u>Vaccine. 29 (39):</u> 6793-801.
- 30. Summers, C. *et al.* (2012) The distribution of immune cells in the lungs of classical and atypical ovine pulmonary adenocarcinoma. Vet Immunol Immunopathol. 146: 1-7.
- 31. Maślanka T *et al.* (2012) The presence of CD25 on bovine WC1+ γδ T cells is positively correlated with their production of IL-10 and TGF-β, but not IFN-γ. <u>Pol J Vet Sci.</u> 15 (1): 11-20.
- 32. Sun, L. *et al.* (2012) The role of proliferation in the regulation of interferon gamma (IFNγ) expression in foals. <u>Dev Comp Immunol</u>. 36 (3): 534-9.
- 33. Hansen, S. *et al.* (2013) Age-related changes in intracellular expression of IFN- γ and TNF- α in equine lymphocytes measured in bronchoalveolar lavage and peripheral blood. <u>Dev Comp Immunol.</u> 39 (3): 228-33.
- 34. Duncombe, L. *et al.* (2013) Investigating the Use of Protein Saver Cards for Storage and Subsequent Detection of Bovine Anti-*Brucella abortus* Smooth Lipopolysaccharide Antibodies and Gamma Interferon. Clin Vaccine Immunol. 20: 1669-74.
- 35. Verhelst, D. *et al.* (2014) Parasite distribution and associated immune response during the acute phase of *Toxoplasma gondii* infection in sheep. <u>BMC Vet Res. 2014 Dec</u>

16;10(1):293.

- 36. Hedges, J.F. *et al.* (2015) Amphotericin B stimulates γδ T and NK cells, and enhances protection from *Salmonella* infection. <u>Innate Immun. 21 (6): 598-608.</u>
- 37. Boshra H *et al.* (2015) A lumpy skin disease virus deficient of an IL-10 gene homologue provides protective immunity against virulent capripoxvirus challenge in sheep and goats. <u>Antiviral Res. 123: 39-49.</u>
- 38. Moreira, M.L. *et al.* (2015) Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. <u>Acta</u> Vet Scand. 57: 51.
- 39. Taylor, G. *et al.* (2015) Efficacy of a virus-vectored vaccine against human and bovine respiratory syncytial virus infections. Sci Transl Med. 7 (300): 300ra127.
- 40. Köhler. H, *et al.* (2015) Characterization of a caprine model for the subclinical initial phase of *Mycobacterium avium* subsp. paratuberculosis infection <u>BMC Veterinary</u> Research. 11 (1): 74.
- 41. Costa-Pereira, C. et al. (2015) One-year timeline kinetics of cytokine-mediated cellular immunity in dogs vaccinated against visceral leishmaniasis. BMC Vet Res. 11 (1): 92.
- 42. El-Naggar, M.M. *et al.* (2015) Development of an improved ESAT-6 and CFP-10 peptide-based cytokine flow cytometric assay for bovine tuberculosis. <u>Comp Immunol Microbiol Infect Dis.</u> 42: 1-7.
- 43. Maggioli, M.F. *et al.* (2016) Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination. Front Immunol. 7: 421.
- 44. Rodríguez-Gómez IM *et al.* (2016) Expression of T-bet, Eomesodermin and GATA-3 in porcine αβ T cells. Dev Comp Immunol. 60: 115-26.
- 45. Moreira, M.L. *et al.* (2016) Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. <u>Vet Parasitol. 220: 33-45.</u>
- 46. McGill, J.L. *et al.* (2016) Vaccination with an Attenuated Mutant of *Ehrlichia chaffeensis* Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One. 11 (2): e0148229.
- 47. Vida, B. *et al.* (2016) Immunologic progression of canine leishmaniosis following vertical transmission in United States dogs. <u>Vet Immunol Immunopathol</u>. 169: 34-8.
- 48. Risalde, M.Á. *et al.* (2017) Development and evaluation of an interferon gamma assay for the diagnosis of tuberculosis in red deer experimentally infected with *Mycobacterium bovis.*. BMC Vet Res. 13 (1): 341.
- 49. Cassady-Cain, R.L. *et al.* (2017) Inhibition of Antigen-Specific and Nonspecific Stimulation of Bovine T and B Cells by Lymphostatin from Attaching and Effacing *Escherichia coli.* Infect Immun. 85 (2): e00845-16.
- 50. Wattegedera, S.R. *et al.* (2017) Enhancing the toolbox to study IL-17A in cattle and sheep. <u>Vet Res. 48 (1): 20.</u>
- 51. Rodrigues, V. *et al.* (2017) Development of a bead-based multiplexed assay for simultaneous quantification of five bovine cytokines by flow cytometry. <u>Cytometry A. 91</u> (9): 901-7.
- 52. Freer, H. *et al.* (2017) A monoclonal antibody for detection of intracellular and secreted interleukin-2 in horses. <u>Vet Immunol Immunopathol.</u> 191: 30-5.
- 53. DaSilva, A.V.A. et al. (2018) Morphophysiological changes in the splenic extracellular

- matrix of *Leishmania infantum*-naturally infected dogs is associated with alterations in lymphoid niches and the CD4+ T cell frequency in spleens. <u>PLoS Negl Trop Dis. 12 (4):</u> e0006445.
- 54. Higgins, J.L. *et al.* (2018) Cell mediated immune response in goats after experimental challenge with the virulent *Brucella melitensis* strain 16M and the reduced virulence strain Rev. 1. Vet Immunol Immunopathol. 202: 74-84.
- 55. Roos, E.O. *et al.* (2018) IP-10: A potential biomarker for detection of Mycobacterium bovis infection in warthogs (*Phacochoerus africanus*). <u>Vet Immunol Immunopathol. 201:</u> 43-8.
- 56. Hillmann, A. *et al.* (2019) A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells. <u>PLoS One. 14 (6): e0218949.</u>
- 57. Witonsky, S. *et al.* (2019) Can levamisole upregulate the equine cell-mediated macrophage (M1) dendritic cell (DC1) T-helper 1 (CD4 Th1) T-cytotoxic (CD8) immune response *in vitro*.? J Vet Intern Med. 33 (2): 889-96.
- 58. Fedorka, C.E. *et al.* (2019) Alteration of the mare's immune system by the synthetic progestin, altrenogest. Am J Reprod Immunol. 82 (2): e13145.
- 59. Aguiar-Soares, R.D.O. *et al.* (2020) Phase I and II Clinical Trial Comparing the LBSap, Leishmune(®), and Leish-Tec(®) Vaccines against Canine Visceral Leishmaniasis. Vaccines (Basel). 8 (4): 690.
- 60. Arrieta-Villegas, C. *et al.* (2020) Immunogenicity and Protection against *Mycobacterium caprae* Challenge in Goats Vaccinated with BCG and Revaccinated after One Year. <u>Vaccines (Basel). 8 (4): 751.</u>
- 61. Bidart, J. *et al.* (2020) A New Cage-Like Particle Adjuvant Enhances Protection of Foot-and-Mouth Disease Vaccine. <u>Front Vet Sci. 7: 396.</u>
- 62. Lacasta, A. *et al.* (2021) Synergistic Effect of Two Nanotechnologies Enhances the Protective Capacity of the *Theileria parva* Sporozoite p67C Antigen in Cattle. <u>J Immunol.</u> 206 (4): 686-99.
- 63. Damani-Yokota, P. *et al.* (2021) Transcriptional programming and gene regulation in WC1⁺ γδ T cell subpopulations. <u>Mol Immunol. 142: 50-62.</u>
- 64. Villa-Mancera, A. *et al.* (2021) Phage display-based vaccine with cathepsin L and excretory-secretory products mimotopes of *Fasciola hepatica*. induces protective cellular and humoral immune responses in sheep. <u>Vet Parasitol. 289: 109340.</u>
- 65. Santillo, A. *et al.* (2022) Feeding tannins to dairy cows in different seasons improves the oxidative status of blood plasma and the antioxidant capacity of cheese. <u>J Dairy Sci.</u> 105 (11): 8609-20.
- 66. Ciliberti, M.G. *et al.* (2022) Green extraction of bioactive compounds from wine lees and their bio-responses on immune modulation using *in vitro* sheep model. <u>J Dairy Sci.</u> 105 (5): 4335-53.
- 67. Matralis, D.T. *et al.* (2023) Intracellular IFN-γ and IL-4 levels of CD4 + and CD8 + T cells in the peripheral blood of naturally infected (*Leishmania infantum*) symptomatic dogs before and following a 4-week treatment with miltefosine and allopurinol: a double-blinded, controlled and cross-sectional study. <u>Acta Vet Scand. 65 (1): 2.</u>
- 68. Bouroutzika, E. *et al.* (2023) Melatonin Administration to Pregnant Ewes for Coccidiosis Control in Their Offspring. Animals (Basel). 13 (14): 2381.
- 69. Ferreras-Colino, E. *et al.* (2023) Oral immunization with heat-inactivated *Mycobacterium bovis* reduces local parasite dissemination and hepatic granuloma

development in mice infected with *Leishmania amazonensis*. Res Vet Sci. 162: 104963. 70. Blanco, F.C. *et al.* (2021) Identifying Bacterial and Host Factors Involved in the Interaction of *Mycobacterium bovis* with the Bovine Innate Immune Cells. Front Immunol. 12: 674643.

- 71. Archer, T.M. *et al.* (2018) *In vivo* effects of aspirin and cyclosporine on regulatory T cells and T-cell cytokine production in healthy dogs. <u>Vet Immunol Immunopathol. 197:</u> 63-8.
- 72. de Silva, K. *et al.* (2018) Defining resilience to mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. <u>Vet Immunol Immunopathol. 195: 56-64.</u>
- 73. Faber, E. *et al.* (2024) Identification of T cell and linear B cell epitopes on African horse sickness virus serotype 4 proteins VP1-1, VP2, VP4, VP7 and NS3. <u>Vaccine. 42 (2):</u> 136-45.
- 74. Lebedev, M. *et al.* (2021) Myeloid-like γδ T cell subset in the immune response to an experimental Rift Valley fever vaccine in sheep. <u>Vet Immunol Immunopathol. 233: 110184.</u> 75. Svitek, N. *et al.* (2022) Systematic Determination of TCR-Antigen and Peptide-MHC Binding Kinetics among Field Variants of a *Theileria parva* Polymorphic CTL Epitope. <u>J</u> Immunol. 208 (3): 549-561.
- 76. Edmans, M.D. *et al.* (2024) MAIT cell-MR1 reactivity is highly conserved across multiple divergent species. <u>J Biol Chem. 107338 [Epub ahead of print].</u>
- 77. Bulun, H. *et al.* (2024) Interferon-gamma producing CD4⁺ T cells quantified by flow cytometry as early markers for *Mycobacterium avium* ssp. *paratuberculosis* infection in cattle. Vet Res. 55 (1): 69.
- 78. Tansiri, Y. *et al.* (2021) New potent epitopes from Leptospira borgpetersenii for the stimulation of humoral and cell-mediated immune responses: Experimental and theoretical studies Informatics in Medicine Unlocked. 25: 100649.
- 79. Burucúa, M.M. *et al.* (2024) Immunoregulatory and antiviral effect mediated by TLR7 and BMAP28 interaction in bovine alphaherpesvirus-infected respiratory primary cultures <u>Veterinary Microbiology.</u> : 110342.

Further Reading

1. Rhodes, S. *et al.* (2000) Distinct response kinetics of gamma interferon and interleukin-4 in bovine tuberculosis. <u>Infect Immun. 68:5393-400.</u>

Storage

This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C.

Avoid repeated freezing and thawing as this may denature the antibody. Storage in frost-free freezers is not recommended.

Guarantee	12 months from date of despatch
Health And Safety Information	Material Safety Datasheet documentation #10040 available at: https://www.bio-rad-antibodies.com/SDS/MCA1783
Regulatory	For research purposes only

Related Products

Recommended Secondary Antibodies

Rabbit Anti Mouse IgG (STAR12...) **RPE** Goat Anti Mouse IgG IgA IgM (STAR87...) HRP Goat Anti Mouse IgG (STAR70...) **FITC** Rabbit Anti Mouse IgG (STAR13...) **HRP** Rabbit Anti Mouse IgG (STAR9...) **FITC** Goat Anti Mouse IgG (STAR77...) **HRP** Goat Anti Mouse IgG (STAR76...) **RPE** Goat Anti Mouse IgG (Fc) (STAR120...) FITC, HRP Goat Anti Mouse IgG (H/L) (STAR117...) Alk. Phos., DyLight®488, DyLight®550, DyLight®650, DyLight®680, DyLight®800, FITC, HRP

Recommended Negative Controls

MOUSE IgG1 NEGATIVE CONTROL (MCA928)

Product inquiries: www.bio-rad-antibodies.com/technical-support

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M411500:221103'

Printed on 03 Jul 2025

© 2025 Bio-Rad Laboratories Inc | Legal | Imprint