

Datasheet: MCA1038PECY7

BATCH NUMBER 153237

Description:	RAT ANTI DOG CD4:RPE-Cy7
Specificity:	CD4
Format:	RPE-CY7
Product Type:	Monoclonal Antibody
Clone:	YKIX302.9
Isotype:	lgG2a
Quantity:	100 TESTS/1ml

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Flow Cytometry				Neat

Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.

Target Species	Dog		
roduct Form	Purified IgG conjugated to R. Phycoerythrin (RPE)-Cy7 - lyop		
onstitution	Reconstitute with 1ml Care should be taken bottom of the vial. Bio	during reconstitution	
ax Ex/Em	Fluorophore RPE-Cy7 488nm laser	Excitation Max (nm) 496	Emission Max (nr 695
paration	Purified IgG prepared supernatant	by affinity chromatog	raphy on Protein G
fer Solution	Phosphate buffered saline		
eservative abilisers	0.09% Sodium Azide	(NaN ₃)	

1% Bovine Serum Albumir	1
5% Sucrose	

lm	mı	ıno	gen	
		4110	'yeıı	

Canine concanavilin A activated T cell blasts.

External Database Links

UniProt:

P33705 Related reagents

Entrez Gene:

403931 CD4 Related reagents

Fusion Partners

Spleen cells from immunised DA rats were fused with cells of the Y3/Ag1.2.3 rat myeloma cell line.

Specificity

Rat anti Dog CD4 antibody, clone YKIX302.9, is a monoclonal antibody specific for the canine CD4 cell surface antigen. Clone YKIX302.9 was clustered at the first Canine Leukocyte Antigen Workshop (CLAW) [Cobbold et al. 1992] along with clone CA13.1E4.

Rat anti Dog CD4 antibody, clone YKIX302.9 partially depletes circulating T lymphocytes when administered *in vivo*, but alone is not sufficient to prolong allograft survival in a canine transplant model (Watson *et al.* 1993).

Uniquely amongst mammals, canine CD4 is expressed by neutrophils as well as by lymphocyte subsets (Moore et al. 1992).

Flow Cytometry

Use 10ul of the suggested working dilution to label 1x10⁶ cells in 100ul

References

- 1. Schaut, R.G. *et al.* (2016) Recovery of antigen-specific T cell responses from dogs infected with *Leishmania* (*L.*) *infantum* by use of vaccine associated TLR-agonist adjuvant. Vaccine. 34 (44): 5225-34.
- 2. Gorman, S.D. *et al.* (1994) Isolation and expression of cDNA encoding the canine CD4 and CD8 alpha antigens. <u>Tissue Antigens</u>. <u>43 (3): 184-8.</u>
- 3. Watson, C.J. *et al.* (1993) CD4 and CD8 monoclonal antibody therapy: strategies to prolong renal allograft survival in the dog. <u>Br J Surg. 80 (11): 1389-92.</u>
- 4. Papadogiannakis, E.I. *et al.* (2009) Determination of intracellular cytokines IFN-gamma and IL-4 in canine T lymphocytes by flow cytometry following whole-blood culture. <u>Can J Vet Res.</u> 73 (2): 137-43.
- 5. Bauer. T.R. Jr. *et al.* (2006) Correction of the disease phenotype in canine leukocyte adhesion deficiency using *ex vivo* hematopoietic stem cell gene therapy. <u>Blood. 108:</u> 3313-20.
- 6. Reis, A.B. *et al.* (2006) Phenotypic features of circulating leucocytes as immunological markers for clinical status and bone marrow parasite density in dogs naturally infected by *Leishmania chagasi*. Clin Exp Immunol. 146: 303-11.
- 7. Araújo, M.S. *et al.* (2011) Immunological changes in canine peripheral blood leukocytes triggered by immunization with first or second generation vaccines against canine visceral leishmaniasis. Vet Immunol Immunopathol. 141: 64-75.
- 8. Benyacoub, J. et al. (2003) Supplementation of food with Enterococcus faecium (SF68)

- stimulates immune functions in young dogs. J Nutr. 133: 1158-62.
- 9. Bund, D. *et al.* (2010) Canine-DCs using different serum-free methods as an approach to provide an animal-model for immunotherapeutic strategies. Cell Immunol. 263: 88-98.
- 10. Estrela-Lima, A. *et al.* (2010) Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates. <u>BMC Cancer. 10: 256.</u>
- 11. Out, T.A. *et al.* (2002) Local T-cell activation after segmental allergen challenge in the lungs of allergic dogs. <u>Immunology. 105: 499-508.</u>
- 12. Boggiatto, P.M. *et al.* (2010) Immunologic indicators of clinical progression during canine *Leishmania infantum* infection. <u>Clin Vaccine Immunol.</u> 17: 267-73.
- 13. Mitchell, L. *et al.* (2012) Clinical and immunomodulatory effects of toceranib combined with low-dose cyclophosphamide in dogs with cancer. <u>J Vet Intern Med. 26: 355-62.</u>
- 14. Tominaga, M. *et al.* (2010) Flow cytometric analysis of peripheral blood and tumor-infiltrating regulatory T cells in dogs with oral malignant melanoma. <u>J Vet Diagn Invest. 22: 438-41.</u>
- 15. Figueiredo, M.M. *et al.* (2014) Expression of Regulatory T Cells in Jejunum, Colon, and Cervical and Mesenteric Lymph Nodes of Dogs Naturally Infected with *Leishmania infantum*. Infect Immun. 82: 3704-12.
- 16. Aresu, L. *et al.* (2014) VEGF and MMP-9: biomarkers for canine lymphoma. <u>Vet Comp Oncol. 12: 29-36.</u>
- 17. Costa-Pereira, C. *et al.* (2015) One-year timeline kinetics of cytokine-mediated cellular immunity in dogs vaccinated against visceral leishmaniasis. BMC Vet Res. 11 (1): 92.
- 18. Hauck, V. *et al.* (2016) Increased numbers of FoxP3-expressing CD4(+) CD25(+) regulatory T cells in peripheral blood from dogs with atopic dermatitis and its correlation with disease severity. Vet Dermatol. 27 (1): 26-e9.
- 19. Riondato, F. *et al.* (2015) Analytical and diagnostic validation of a flow cytometric strategy to quantify blood and marrow infiltration in dogs with large b-cell lymphoma. Cytometry B Clin Cytom. Dec 13. [Epub ahead of print]
- 20. Miranda, S. *et al.* (2007) Characterization of circulating lymphocyte subpopulations in canine leishmaniasis throughout treatment with antimonials and allopurinol. <u>Vet Parasitol.</u> <u>144 (3-4): 251-60.</u>
- 21. Yamaya, Y. & Watari, T. (2015) Increased proportions of CCR4(+) cells among peripheral blood CD4(+) cells and serum levels of allergen-specific IgE antibody in canine chronic rhinitis and bronchitis. <u>J Vet Med Sci. 77 (4): 421-5.</u>
- 22. Schaut, R.G. *et al.* (2016) Regulatory IgDhi B Cells Suppress T Cell Function via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis. J Immunol. 196 (10): 4100-9.
- 23. Tagawa, M. *et al.* (2016) Evaluation of Costimulatory Molecules in Peripheral Blood Lymphocytes of Canine Patients with Histiocytic Sarcoma. PLoS One. 11 (2): e0150030.
- 24. Munhoz.T.D. *et al.* (2016) Regulatory T cells in dogs with multicentric lymphoma: peripheral blood quantification at diagnosis and after initial stage chemotherapy. <u>Arq. Bras. Med. Vet. Zootec. 68 (1): 1-9.</u>
- 25. Miller, J. *et al.* (2015) Humoral and Cellular Immune Response in Canine Hypothyroidism. <u>J Comp Pathol. 153 (1): 28-37.</u>
- 26. Duz AL *et al.* (2014) The Tcl and Tcll *Trypanosoma cruzi* experimental infections induce distinct immune responses and cardiac fibrosis in dogs. Mem Inst Oswaldo Cruz. 109 (8): 1005-13.
- 27. Gelain, M.E. et al. (2014) CD44 in canine leukemia: analysis of mRNA and protein

- expression in peripheral blood. Vet Immunol Immunopathol. 159 (1-2): 91-6.
- 28. Viana, K.F. *et al.* (2015) Setting the proportion of CD4+ and CD8+ T-cells co-cultured with canine macrophages infected with *Leishmania chagasi*. <u>Vet Parasitol. 211 (3-4):</u> 124-32.
- 29. Viana, K.F. *et al.* (2016) Application of rapid in vitro co-culture system of macrophages and T-cell subsets to assess the immunogenicity of dogs vaccinated with live attenuated Leishmania donovani centrin deleted parasites (LdCen-/-). <u>Parasit Vectors. 9: 250.</u>
- 30. Michael HT *et al.* (2013) Isolation and characterization of canine natural killer cells. <u>Vet Immunol Immunopathol. 155 (3): 211-7.</u>
- 31. Mitchell, L. *et al.* (2012) Induction of remission results in spontaneous enhancement of anti-tumor cytotoxic T-lymphocyte activity in dogs with B cell lymphoma. <u>Vet Immunol Immunopathol. 145 (3-4): 597-603.</u>
- 32. Bonnefont-Rebeix, C. *et al.* (2016) Characterization of a novel canine T-cell line established from a spontaneously occurring aggressive T-cell lymphoma with large granular cell morphology. <a href="https://linearchy.com/
- 33. Deravi, N. *et al.* (2017) Specific immunotypes of canine T cell lymphoma are associated with different outcomes. Vet Immunol Immunopathol. 191: 5-13.
- 34. Bahamondes, F. *et al.* (2017) Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells. <u>BMC Vet Res. 13 (1): 166.</u>
- 35. Pinheiro, D. (2011) Phenotypic and functional characterization of a CD4(+) CD25(high) FOXP3(high) regulatory T-cell population in the dog. <u>Immunology</u>. 132: 111-22.
- 36. Withers, S.S. *et al.* (2018) Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. Dev Comp Immunol. 87: 64-74.
- 37. Declue, A.E. *et al.* (2018) Identification of immunologic and clinical characteristics that predict inflammatory response to C. Novyi-NT bacteriolytic immunotherapy. <u>BMC Vet Res.</u> 14 (1): 119.
- 38. DaSilva, A.V.A. *et al.* (2018) Morphophysiological changes in the splenic extracellular matrix of *Leishmania infantum*-naturally infected dogs is associated with alterations in lymphoid niches and the CD4+ T cell frequency in spleens. <u>PLoS Negl Trop Dis. 12 (4):</u> e0006445.
- 39. Roatt, B.M. *et al.* (2017) A Vaccine Therapy for Canine Visceral Leishmaniasis Promoted Significant Improvement of Clinical and Immune Status with Reduction in Parasite Burden. Front Immunol. 8: 217.
- 40. Lisiecka. U. *et al.* (2019) Evaluation of T regulatory lymphocytes and serum concentration of selected cytokines in dogs with perianal tumors. <u>Vet Immunol Immunopathol.</u> 207: 10-17.
- 41. Aricò, A. *et al.* (2013) The role of vascular endothelial growth factor and matrix metalloproteinases in canine lymphoma: *in vivo* and *in vitro* study. <u>BMC Vet Res. 9: 94.</u>
- 42. Aguiar-Soares, R.D.O. *et al.* (2020) Phase I and II Clinical Trial Comparing the LBSap, Leishmune[®], and Leish-Tec[®] Vaccines against Canine Visceral Leishmaniasis. <u>Vaccines</u> (Basel). 8 (4)Nov 17 [Epub ahead of print].
- 43. Akiyama, S. *et al.* (2019) Th17 cells increase during maturation in peripheral blood of healthy dogs. Vet Immunol Immunopathol. 209: 17-21.
- 44. Martini, V. *et al.* (2019) Prognostic role of non-neoplastic lymphocytes in lymph node aspirates from dogs with diffuse large B-cell lymphoma treated with chemo-immunotherapy. <u>Res Vet Sci. 125: 130-5.</u>
- 45. Yasuda, N. et al. (2008) CC chemokine receptor 4-positive CD4(+) lymphocytes in

peripheral blood increases during maturation in healthy beagles. <u>J Vet Med Sci. 70 (9):</u> 989-92.

- 46. Martins, G.C. *et al.* (2018) Clinical-pathological and immunological biomarkers in dogs with atopic dermatitis. <u>Vet Immunol Immunopathol. 205: 58-64.</u>
- 47. Anai, L.A. *et al.* (2017) Quantification of Treg cells in peripheral blood and lymph nodes of dogs with multicentric lymphoma <u>Arquivo Brasileiro de Medicina Veterinária e Zootecnia.</u> 69 (6): 1496-502.
- 48. Wolf-Ringwall, A. *et al.* (2020) Prospective evaluation of flow cytometric characteristics, histopathologic diagnosis and clinical outcome in dogs with naïve B-cell lymphoma treated with a 19-week CHOP protocol. <u>Vet Comp Oncol. 18 (3): 342-52.</u>
- 49. Sayag, D. *et al.* (2020) Proof-of-concept study: Evaluation of plasma and urinary electrolytes as markers of response to L-asparaginase therapy in dogs with high-grade lymphoma. Vet Clin Pathol. 49 (3): 476-83.

Storage	Prior to reconstitution store at +4°C.	
	After reconstitution store at +4°C.	
	DO NOT FREEZE. This product should be stored undiluted. The	nis product is photosensitive
	and should be protected from light.	
Guarantee	12 months from date of despatch	
Acknowledgements	Cy® and CyDye® are registered trademarks of GE Healthcare	
Health And Safety	Material Safety Datasheet documentation #20487 available at:	
Information	https://www.bio-rad-antibodies.com/SDS/MCA1038PECY7	
	20487	
Regulatory	For research purposes only	

Related Products

Recommended Negative Controls

RAT IgG2a NEGATIVE CONTROL:RPE-Cy7 (MCA6005PECY7)

North & South Tel: +1 800 265 7376
America Fax: +1 919 878 3751

Worldwide

Tel: +44 (0)1865 852 700

Europe

Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50

Email: antibody_sales_us@bio-rad.com

Fax: +44 (0)1865 852 739
Email: antibody_sales_uk@bio-rad.com

Email: antibody_sales_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M375249:210104'

Printed on 29 Apr 2024

© 2024 Bio-Rad Laboratories Inc | Legal | Imprint