

## Datasheet: AAI28F

| Description:         | GOAT ANTI CHICKEN IgA:FITC |
|----------------------|----------------------------|
| Specificity:         | IgA                        |
| Format:              | FITC                       |
| <b>Product Type:</b> | Polyclonal Antibody        |
| Isotype:             | Polyclonal IgG             |
| Quantity:            | 1 mg                       |
|                      |                            |

## **Product Details**

## **Applications**

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit <a href="www.bio-rad-antibodies.com/protocols">www.bio-rad-antibodies.com/protocols</a>.

|                            | Yes | No | Not Determined | Suggested Dilution |
|----------------------------|-----|----|----------------|--------------------|
| Flow Cytometry             | -   |    |                |                    |
| Immunohistology - Frozen   | -   |    |                | 1/200 - 1/2,000    |
| Immunohistology - Paraffin |     |    | •              |                    |

Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using the appropriate negative/positive controls.

| Target Species | Chicken               |                           |                        |                        |
|----------------|-----------------------|---------------------------|------------------------|------------------------|
| Product Form   | Purified IgG fraction | on conjugated to Fluoresc | ein Isothiocyanate Iso | omer 1 (FITC) - liquid |
| Max Ex/Em      | Fluorophore           | Excitation Max (nm)       | Emission Max (nm)      |                        |
|                | FITC                  | 490                       | 525                    |                        |
|                |                       |                           |                        |                        |

**Antiserum Preparation** Antisera to chicken IgA were raised by repeated immunisation of goat with highly purified antigen. Purified IgG prepared by affinity chromatography.

| Buffer Solution                   | Phosphate buffered saline                    |
|-----------------------------------|----------------------------------------------|
| Preservative<br>Stabilisers       | 0.09% Sodium Azide 0.2% Bovine Serum Albumin |
| Approx. Protein<br>Concentrations | IgG concentration 1.0 mg/ml                  |

| Immunogen   | Purified chicken IgA.                                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RRID        | AB_323050                                                                                                                                                            |
| Specificity | Goat anti Chicken IgA antibody recognizes chicken immunoglobulin A and shows no cross-reactivity with other chicken immunoglobulin classes in immunoelectrophoresis. |
|             | Goat anti Chicken IgA antibody may react with IgA from other species.                                                                                                |
| References  | 1. Wyszyśska A <i>et al.</i> (2004) Oral immunization of chickens with avirulent <i>Salmonella</i>                                                                   |

- 1. Wyszyśska A *et al.* (2004) Oral immunization of chickens with avirulent *Salmonella* vaccine strain carrying *C. jejuni* 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type *Campylobacter*. <u>Vaccine. 22 (11-12): 1379-89.</u>
- 2. Beal, R.K. *et al.* (2004) Age at primary infection with *Salmonella enterica* serovar *Typhimurium* in the chicken influences persistence of infection and subsequent immunity to re-challenge. <u>Vet Immunol Immunopathol. 100 (3-4): 151-64.</u>
- 3. Beal, R.K. *et al.* (2004) Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with *Salmonella enterica* serovar *Typhimurium*. <u>Avian Pathol. 33 (1): 25-33.</u>
- 4. Barrow, P.A. *et al.* (2004) Faecal shedding and intestinal colonization of *Salmonella enterica* in in-bred chickens: the effect of host-genetic background. <u>Epidemiol Infect. 132</u> (1): 117-26.
- 5. Withanage, G.S. *et al.* (2005) Cytokine and chemokine responses associated with clearance of a primary *Salmonella enterica* serovar *Typhimurium* infection in the chicken and in protective immunity to rechallenge. <u>Infect Immun. 73 (8): 5173-82.</u>
- 6. Beal, R.K. *et al.* (2005) A strong antigen-specific T-cell response is associated with age and genetically dependent resistance to avian enteric salmonellosis. <u>Infect Immun. 73:</u> 7509-16.
- 7. Rezar, V. *et al.* (2007) Dose-dependent effects of T-2 toxin on performance, lipid peroxidation, and genotoxicity in broiler chickens. <u>Poult Sci. 86 (6): 1155-60.</u>
- 8. Zhang L *et al.* (2008) Enhancement of mucosal immune responses by intranasal co-delivery of Newcastle disease vaccine plus CpG oligonucleotide in SPF chickens *in vivo*. Res Vet Sci. 85 (3): 495-502.
- 9. Singh, R. (2010) Immunogenicity and protective efficacy of virosome based vaccines against Newcastle disease. <u>Trop Anim Health Prod. 42: 465-71</u>
- 10. Buckley, A.M. *et al.* (2010) Evaluation of live-attenuated *Salmonella* vaccines expressing *Campylobacter* antigens for control of *C. jejuni* in poultry. <u>Vaccine. 28:</u> 1094-105.
- 11. Park, S.I. *et al.* (2010) Immune response induced by ppGpp-defective *Salmonella enterica* serovar *Gallinarum* in chickens. <u>J Microbiol. 48 (5): 674-81.</u>
- 12. Koppad, S. *et al.* (2011) Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens. Res Vet Sci. 91 (3): 384-90.
- 13. Andersen, J.P. *et al.* (2013) No protection in chickens immunized by the oral or intramuscular immunization route with *Ascaridia galli* soluble antigen. <u>Avian Pathol. 42 (3):</u> 276-82.
- 14. Salisbury Anne-Marie *et al.* (2014) *Salmonella* Virchow Infection of the Chicken Elicits Cellular and Humoral Systemic and Mucosal Responses, but Limited Protection to Homologous or Heterologous Re-Challenge <u>Frontiers in Veterinary Science. 1: 6.</u>

- 15. Barman, N.N. et al. (2014) Reflection of serum immunoglobulin isotypes in the egg yolk of laying hens immunized with enterotoxigenic Escherichia coli Veterinary World. 7 (9): 749-53.
- 16. Park, E.H. et al. (2014) Protective efficacy of a single dose of baculovirus hemagglutinin-based vaccine in chickens and ducks against homologous and heterologous H5N1 virus infections. Viral Immunol. 27 (9): 449-62.
- 17. Sadeyen JR et al. (2014) Analysis of immune responses induced by avian pathogenic Escherichia coli infection in turkeys and their association with resistance to homologous re-challenge. Vet Res. 45: 19.
- 18. Bérto Letícia Dal et al. (2015) Live and Inactivated Salmonella enteritidis Vaccines: Immune Mechanisms in Broiler Breeders World Journal of Vaccines, 05 (04): 155-164.
- 19. Radomska, K.A. et al. (2016) Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni. PLoS One. 11 (10): e0164837.
- 20. Beir o, B.C.B. et al. (2018) Effect of an Enterococcus faecium. probiotic on specific IgA following live Salmonella enteritidis. vaccination of layer chickens. Avian Pathol. 47 (3): 325-33.
- 21. Al-Karagoly, H. et al. (2019) Turkey humoral and cell-mediated immune responses to a Newcastle viscerotropic vaccine and its association with major histocompatibility complex. Bulg J Vet Med. 22 (1): 26-40.
- 22. Bonato, M. et al. (2020) Effects of yeast cell wall on immunity, microbiota, and intestinal integrity of Salmonella-infected broilers Journal of Applied Poultry Research. 29 (3): 545-58.
- 23. Śmiałek, M. et al. (2021) The influence of maternally derived antibodies on protection against aMPV/A infection in TRT vaccinated turkeys. Poult Sci. 100 (5): 101086.

Storage Store at +4°C. DO NOT FREEZE.

> This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.

| Guarantee                        | 12 months from date of despatch                                                                                                                                              |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Health And Safety<br>Information | Material Safety Datasheet documentation #10041 available at: <a href="https://www.bio-rad-antibodies.com/SDS/AAI28F">https://www.bio-rad-antibodies.com/SDS/AAI28F</a> 10041 |  |

Regulatory For research purposes only

North & South Tel: +1 800 265 7376 America Fax: +1 919 878 3751

Worldwide

Tel: +44 (0)1865 852 700

Europe

Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50

Email: antibody\_sales\_us@bio-rad.com

Fax: +44 (0)1865 852 739 Email: antibody\_sales\_uk@bio-rad.com

Email: antibody\_sales\_de@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M428057:240301'

## Printed on 12 Sep 2024