

Datasheet: 4745-1051

BATCH NUMBER 1710

Description:	SHEEP ANTI GREEN FLUORESCENT PROTEIN
Specificity:	GREEN FLUORESCENT PROTEIN
Format:	Purified
Product Type:	Polyclonal Antibody
Isotype:	Polyclonal IgG
Quantity:	1 ml

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Immunohistology - Frozen			•	
Immunohistology - Paraffin			•	
ELISA				
Western Blotting			•	
Immunofluorescence	-			

Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using the appropriate negative/positive controls.

Product Form	Purified IgG - liquid
Preparation	Purified IgG prepared by affinity chromatography on Protein G
Buffer Solution	Phosphate buffered saline
Preservative Stabilisers	0.09% Sodium Azide (NaN ₃)
Approx. Protein Concentrations	IgG concentration 5.0 mg/ml
Immunogen	Green fluorescent protein from Aequorea victoria.
External Database	UniProt:

Links	P42212 Related reagents
RRID	AB_619712
Specificity	Sheep anti Green Fluorescent Protein antibody recognizes green fluorescent protein (GFP), a ~27 kDa protein derived from the jellyfish <i>Aequorea victoria</i> . GFP fluoresces green (509nm) when excited by blue light (395nm) and is commonly used as a marker of gene expression.
References	1. Collins, R.T. et al. (2010) MAZe: a tool for mosaic analysis of gene function in zebrafish. Nat Methods. 7: 219-23. 2. Wu, L. et al. (2011) Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. J Neurosci. 31 (13): 4821-33. 3. Knipe, L. et al. (2010) A revised model for the secretion of tPA and cytokines from cultured endothelial cells. Blood. 116: 2183-91. 4. Shneider, N.A. et al. (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev. 4: 42. 5. Soza-Ried, C. et al. (2008) Maintenance of thymic epithelial phenotype requires extrinsic signals in mouse and zebrafish. J Immunol. 181: 5272-7. 6. Lopez, K.A. et al. (2011) Convection-enhanced delivery of topotecan into a PDGF-driven model of glioblastoma prolongs survival and ablates both tumor-initiating cells and recruited glial progenitors. Cancer Res. 71: 3963-71. 7. League, G.P. and Nam, S.C. (2011) Role of kinesin heavy chain in Crumbs localization along the rhabdomere elongation in Drosophila photoreceptor. PLoS One. 6:e21218. 8. Siembab, V.C. et al. (2010) Target selection of proprioceptive and motor axon synapses on neonatal V1-derived la inhibitory interneurons and Renshaw cells. J Comp Neurol. 518: 4675-701. 9. Srinivasan, S. et al. (2012) The receptor tyrosine phosphatase Lar regulates adhesion between Drosophila male germline stem cells and the niche. Development. 139: 1381-90. 10. Haberlandt, C. et al. (2011) Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One. 6: e17575. 11. Cheung, L.S. et al. (2013) Dynamic model for the coordination of two enhancers of broad by EGFR signaling. Proc Natl Acad Sci U S A. 110: 17939-44. 12. Li, X. et al. (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature. 498: 456-62. 13. Behnia, R. et al. (2015) He PDZ-domain protein Whirlin facilitates

18. Crouch, E.E. et al. (2015) Regional and stage-specific effects of prospectively purified

17. Schlegel, P. et al. (2016) Synaptic transmission parallels neuromodulation in a central

food-intake circuit. eLife 2016;10.7554/eLife.16799

vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 35 (11): 4528-39. 19. Gushchina, S. et al. (2018) Increased expression of colony-stimulating factor-1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia. 66 (10): 2108-25.

20. Won, J.H. et al. (2019) ADAMTS Sol narae cleaves extracellular Wingless to generate a novel active form that regulates cell proliferation in Drosophila. Cell Death Dis. 10 (8): 564.

21. Del Valle Rodríguez, A. et al. (2020) A network approach to analyze neuronal lineage and layer innervation in the *Drosophila* optic lobes. PLoS One. 15 (2): e0227897.

22. Choquet, C. et al. (2020) Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat Commun. 11 (1): 5300.

23. Lee, S.R. et al. (2020) Regulation of epithelial integrity and organ growth by Tctp and Coracle in Drosophila.. PLoS Genet. 16 (6): e1008885.

24. Oliver, K.M. et al. (2021) Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nat Commun. 12 (1): 1451.

Further Reading

1. Adams, K.L. et al. (2015) Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 6: 6778.

Storage

Store at +4°C or at -20°C if preferred.

Storage in frost-free freezers is not recommended.

This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.

12 months from date of despatch

Health And Safety Information

Material Safety Datasheet documentation #10040 available at:

https://www.bio-rad-antibodies.com/SDS/4745-1051

10040

Regulatory

For research purposes only

Related Products

Recommended Secondary Antibodies

Rabbit Anti Sheep IgG (H/L) (5184-2304...) Biotin

America

North & South Tel: +1 800 265 7376

Worldwide

Tel: +44 (0)1865 852 700

Europe

Tel: +49 (0) 89 8090 95 21

Fax: +1 919 878 3751

Fax: +44 (0)1865 852 739

Fax: +49 (0) 89 8090 95 50 Email: antibody_sales_de@bio-rad.com

Email: antibody_sales_us@bio-rad.com

Email: antibody_sales_uk@bio-rad.com

To find a batch/lot specific datasheet for this product, please use our online search tool at: bio-rad-antibodies.com/datasheets 'M363150:200528'

Printed on 27 Feb 2025